Объяснение:
1) Боковая сторона равнобедренного треугольника лежит напротив угла при основании равнобедренного треугольника.
ВСЕГДА
Действительно боковые стороны равнобедренного треугольника лежат напротив углов при его основании.
2) Равносторонний треугольник является прямоугольным.
НИКОГДА
В равносторонней треугольнике углы равны. Так как сумма углов треугольника равна 180°, ⇒ углы равностороннего треугольника равны 60°.
3) Равнобедренный треугольник является равносторонним.
ИНОГДА
В равнобедренном треугольнике по определению две стороны равны. Их называют боковыми. Третью сторону называют основанием. Если основание будет равно боковой стороне, то треугольник будет равносторонним.
4) Равносторонний треугольник является равнобедренным.
ВСЕГДА
В равностороннем треугольнике равны три стороны. Для равнобедренного треугольника достаточно равенства двух сторон. Значит равносторонний треугольник является равнобедренным.
5) Треугольник является тупоугольным, если у него есть тупой угол.
ВСЕГДА
Действительно, в любом треугольнике два угла острые. Третий может быть или острым, либо прямым, либо тупым. В соответствии с этим треугольники делятся на остроугольные, прямоугольные и тупоугольные соответственно.
1) Экскурс в теорию: угол между плоскостями (ВАС) и (САН)- двугранный угол (НАСВ) измеряется градусной мерой линейного угла L HCB , образованного лучами СВ и СН , имеющими начало на ребре (АС) и перепендикулярными к нему,
т.е. L HCB = 60⁰. (см. рис.).
2) Углом между прямой и плоскостью наз-ся угол между этой прямой и её проекцией на данную плоскость, тогда углом между катетом ВС и плоскостью (САН) является L L HCB = 60⁰ .
3) Угол между гипотенузой АВ найдём, рассмотрев ΔАВН - прям.:
sin L BAH = BH/AB = 0,5√3a/(a√2) =√6/4,
таким образом L BAH = arcsin √6/4.
ОТвет: 60⁰; arcsin √6/4.
УДАЧИ