∠А = 55°
Объяснение:
ВМ является медианой, следовательно АМ = МС - согласно условию задачи.
Но так как АМ = ВМ (также согласно условию задачи), то МС = ВМ, в силу чего треугольник ВМС - равнобедренный и ∠МВС = ∠С =35°.
Следовательно, угол ВМС равен:
180 - 35 - 35 = 110°.
Из этого следует, что в треугольнике АВМ угол АМВ, смежный с углом ВМС, равен:
180 - 110 = 70°.
Треугольник АВМ также является равнобедренным, т.к. АМ = ВМ, и если угол при его вершине равен 70°, то углы при основании (∠А и ∠АВМ) равны:
∠А = ∠АВМ = (180 - 70) : 2 = 110 : 2 = 55°
ответ: ∠А = 55°
Решение: Пусть ABCD - данный ромб, АC=30 см, BD=40 см
О - точка персечения диагоналей
Диагонали ромба(как параллелограмма) в точке пересечения делятся пополам.
значит AO=CO=1\2*AC=1\2*30=15 см
BO=DO=1\2*BD=1\2*40=20 см
Диагонали ромба пересекаются под прямым углом
По теореме Пифагора
AB=корень(AO^2+BO^2)=корень(15^2+20^2)=25 см
Полупериметр ромба равен p=2*АВ=2*25=50 см
Площадь ромба равна половине произведения диагоналей
S=1\2*AC*BD=1\2*30*40=600 cм^2
Площадь ромба равна произведению полуперимтера на радиус вписанной окружности
S=p*r
Радиус вписанной в ромб окружности равен
r=S\p=600\50=12 cм
ответ: 12 см