Под углом к плоскости проведено перпендикуляр и уклона. длина перпендикуляра равна 5 см. угол между наклонной и перпендикуляром равна 45 градусов. найти длину наклонной и ее проекции на плоскость
Боковые стороны в р/б равны , обозначим их за Х. х+х+96=196 2х=196-96 2х=100 х=100/2 х=50 теперь проведем высоту к основанию, она же будет медианой(делить основание пополам) , у нас должно получится 2 равных прямоугольных треугольника, рассмотрим один из них: боковая сторона р/б будет гипотенузой, а один из катетов равен половине основания р/б(катет1): катет1=96/2 катет1=48 найдем высоту р/б(или катет2) по т.пифагора: гипотенуза^2=катет1^2+катет2^2 катет2=корень из(гипотенуза^2-катет1^2) катет2=корень из(50^2-48^2) катет2=14 площадь=высота*основание/2 площадь=14*96/2 площадь=672
65. Расстояние от середины отрезка АВ до прямой а является средней линией трапеции, боковыми сторонами которой являются отрезок АВ и отрезок прямой а, а основаниями - отрезки перпендикуляров АС и ВД к прямой а, которые по условию задачи равны 10 м и 20 м. Поэтому искомое расстояние находим как среднюю линию трапеции: L=(10+20):2=30:2=15 (м) ответ: 15 м
67. Пусть АД и ВС - основания трапеции АВСД и ВС<АД, по условию ВС:АД=2:3, значит ВС=2х, АД=3х также, по условию, средняя линия трапеции равна 5 м, следовательно, (2х+3х):2=5 5х=5*2 5х=10 х=2 ВС=2х=2*2=4(м) АД=3х=3*2=6(м) ответ: 4 м и 6 м
найти длину наклонной и ее проекции на плоскость
АВ -перпендикуляр
АС -наклонная
ВС-проекция
длина наклонной АС=АВ/cos45=5 /√2/2=5√2 см
длина проекции ВС=AB*tg45=5*1=5 см