Обозначим середину стороны DС буквой K. Координаты точки K ищем по формуле деления отрезка пополам
\begin{lgathered}x_K=\dfrac{x_D+x_C}{2}=\dfrac{8+(-4)}{2}=2\\ y_K=\dfrac{y_D+y_C}{2}=\dfrac{-2+(-2)}{2}=-2\end{lgathered}
x
K
=
2
x
D
+x
C
=
2
8+(−4)
=2
y
K
=
2
y
D
+y
C
=
2
−2+(−2)
=−2
Далее найдем уравнение медианы МК, используя формулу для уравнения прямой, проходящей через две заданные точки. Т.е. MK проходит через точки M(-2;6), K(2;-2).
\begin{lgathered}\dfrac{x-x_1}{x_2-x_1}=\dfrac{y-y_1}{y_2-y_1}\\ \\ \\ \dfrac{x-(-2)}{2-(-2)}=\dfrac{y-6}{-2-6}~~~\Rightarrow~~~\dfrac{x+2}{4}=\dfrac{y-6}{-8}~~~\Rightarrow~~~ \boxed{y+2x-2=0}\end{lgathered}
x
2
−x
1
x−x
1
=
y
2
−y
1
y−y
1
2−(−2)
x−(−2)
=
−2−6
y−6
⇒
4
x+2
=
−8
y−6
⇒
y+2x−2=0
ответ: y + 2x - 2 = 0.
Дан ромб АВСД. У ромба все стороны равны. И равны Р/4=80/4=20.Диагонали пусть будут равны АС=3х и ВД=4х.
Диагонали ромба пересекаются под прямым углом, делятся пополам точкой пересечения О и соответственно образуют 4 равных прямоугольных треугольника. Рассмотрим один из них АОВ. Применим теорему Пифагора
АВ²=АО²+ВО²
20²=(1,5х)²+(2х)²
400=2,25х²+4х²
6,25х²=400
х=20/2,5
х=8
Значит катеты равны
АО=1,5х=12 см
ВО=2х=16 см
Найдем острые углы через тангенс
tg<A=BO/AO=16/12=4/3 (53°)
tg<B=AO/BO=12/16=3/4 (37°)
острые углы треугольника равны половине углов ромба, поэтому углы ромба равны 106° и 74°
Диагонали ромба равны 3х=24 см и 4х=32 см
2. Параллельные прямые не имеют общих точек. ответ не верный.
3. Таких прямых может быть бесконечное количество. ответ верный. (вопрос очень коряво составлен, но надеюсь, угадал, что автор имел ввиду, ведь через точку может и не проходить прямая)
4. Параллельные прямые могут и не иметь общих точек. ответ не верный.