Ромб - это частный случай параллелограмма, следовательно его площадь можно найти по стандартной формуле: основание умножить на высоту. Периметр - это сумма длин всех сторон, а так как все стороны ромба одинаковы (равны), следовательно периметр - это сторона умножить на 4. Найдем сторону: Периметр разделим на 4: 8/4=2. Теперь подставим сторону в формулу площади: 2*высота=2, => высота=2/2=1. ответ: высота = 1.
Пусть в треугольнике ABC угол A равен a, угол C равен b, проведены биссектрисы AD и CE, которые пересекаются в точке O (см. рисунок). Рассмотрим треугольник AOC. Сумма его углов равна 180 градусам, тогда угол AOC равен 180-1/2BAC-1/2BCA=180-DAC-ECA=180-1/2(a+b). Угол, под которым пересекаются две прямые - это наименьший из углов, которые получаются при их пересечении. Докажем, что угол EOA будет меньше угла AOC, тогда угол EOA - угол, под которым пересекаются биссектрисы. Действительно, угол EOA является смежным с углом AOC, тогда он равен 1/2(a+b). Так как a+b<180, 1/2(a+b)<90 и 1/2(a+b)<180-1/2(a+b), то есть, какими бы ни были углы a и b, угол EOA всегда будет меньше угла AOC. Окончательный ответ - 1/2(a+b).
Многоугольник с тремя вершинами называется треугольником, с чётырьмя — четырёхугольником, с пятью — пятиугольником и т. д.
Многоугольник с n вершинами называется n-угольником.
Плоским многоугольником называется фигура, которая состоит из многоугольника и ограниченной им конечной части площади.
Многоугольник называют выпуклым, если выполнено одно из следующих (эквивалентных) условий: он лежит по одну сторону от любой прямой, соединяющей его соседние вершины. (то есть продолжения сторон многоугольника не пересекают других его сторон) ; он является пересечением (то есть общей частью) нескольких полуплоскостей; любой отрезок с концами в точках, принадлежащих многоугольнику, целиком ему принадлежит.
Выпуклый многоугольник называется правильным, если у него все стороны равны и все углы равны, например равносторонний треугольник, квадрат и правильный пятиугольник.
Выпуклый многоугольник называется вписанным в окружность, если все его вершины лежат на одной окружности.
Выпуклый многоугольник называется описанным около окружности, если все его стороны касаются некоторой окружности.
Sромба=ah (основание на высоту)
откуда h=S/a
h=2/2=1