3√3/2 см.
Объяснение:
Если тригонометрические соотношения в прямоугольном треугольнике ещё не изучены, можно воспользоваться этим
1. Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, тогда длина гипотенузы с = 2R = 2•3 = 6(см).
2. По условию один из острых углов треугольника равен 60°, тогда второй острый угол равен 90° - 60° = 30°. Напротив него лежит катет, равный половине гипотенузы, а = 6:2= 3 (см).
3. По теореме длина второго катета b = √(36 - 9) = √27 = 3√3(см).
4. S = 1/2ab,
S = 1/2• c • h, тогда
1/2•a•b = 1/2• c • h,
ab = ch,
h = (ab)/c = (3•3√3)/6 = 3√3/2 (см).
По условию СС₁║DD₁. Через две параллельные прямые можно провести плоскость, притом только одну. Отрезок СD лежит в этой плоскости, С₁D₁- проекция отрезка СD на плоскость β ⇒ С₁, Е₁ и D₁ лежат в на одной прямой.
Проведем через D параллельно C₁D₁ прямую до пересечения с продолжением СС₁ в т.С₂. Продолжим ЕЕ₁ до пересечения с DC₂ в точке Е₂. Прямые C₁C₂║E₁E₂║D₁D; C₂D₂║C₁D₁ ⇒ C₁C₂=E₁E₂=D₁D=√3. Домножив числитель и знаменатель значения СС₁ на √3, получим СС₁=2√3 Отрезок СС₂=СС₁+С₁С₂=2√3+√3=3√3 . Точка Е - середина CD, ЕЕ₂║СС2 ⇒ отрезок ЕЕ₂ - средняя линия треугольника СС₂D и равна половине СС₂. ЕЕ₂=3√3:2=1,5√3 Отсюда EE₁=ЕЕ₁-Е₁Е₁=1,5 √3-√3=0,5√3 или иначе ЕЕ₁=√3/2 см
(180-112)/2=34