Объяснение:1
1)Сколько общих точек имеют окружность и секущая?
Укажите верные утверждения:
1)3
2)нет общих точек
3)1
4)2 верно
2
Укажите верные утверждения:
1) Вписанный угол измеряется дугой, на которую он опирается верно
2) Окружность и секущая не имеют общих точек
3) Вписанные углы, опирающиеся на полуокружность - прямые верно
4) Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности верно
3
В трапецию, высота которой равна 17, вписана окружность. Найдите радиус этой окружности. R=8,5
4
Градусная мера дуги равна 40 градусов. Найдите градусную меру центрального угла, соответствующего этой дуге 80°
5
Даны окружность с центром О радиуса 5 см и точка А. Через точку А проведены две касательные к окружности. Найдите угол между касательными, если ОА = 10см.
° Отв: 60°
6
Из точки А к окружности с центром О проведена касательная, В - точка касания. Найдите радиус окружности, если АО = 17, АВ = 15. Отв: R=8
7
Сторона квадрата равна 13. Найдите радиус вписанной окружности. Отв: r=6,5
ответ записать без пробелов, единиц измерения, в десятичной дроби ставим ЗАПЯТУЮ!
8
Радиус окружности, проведенный к точке касания...
1)образует с касательной угол меньше 90 градусов неверно
2)образует с касательной угол больше 90 градусов неверно
3)перпендикулярен касательной верно
4)параллелен касательной неверно
9
В равностороннем треугольнике высота равна 15. Найдите радиус описанной окружности Отв: R=10
10
Сколько общих точек имеют окружность и касательная? Отв: 1 общую точку
11
В равностороннем треугольнике радиус вписанной окружности равен 2,7. Найдите радиус окружности описанной около этого треугольника. Отв: R=5,4
12
Градусная мера дуги равна 40 градусов. Найдите вписанный угол, который опирается на эту дугу. Отв: 40°
13
Вписанный угол окружности равен 40 градусов. Найдите градусную меру дуги, на которую он опирается.
Отв: 40°
14
Точки А и В разделили окружность на дуги, градусные меры которых относятся как 4:5. Найдите градусную меру большей дуги. Отв: 200°
15
В ромб вписана окружность.Её радиус равен 13. Найдите высоту ромба. Отв: 26
Надо построить плоскость, проходящую через точку C1 и перпендикулярную BD1.
Фигура A1C1DD1 - правильная треугольная пирамида с вершиной D1. Отсюда следует, что D1 проектируется на основание A1C1D в центр O правильного треугольника A1C1D (то есть в точку, которая одновременно является точкой пересечения высот, медиан, биссектрис и центром описанной окружности треугольника A1C1D).
Точно так же фигура A1C1DB - правильная треугольная пирамида (в данном случае - это вообще правильный тетраэдр, у которого все ребра равны, то есть все грани - правильные треугольники). Поэтому точка B тоже проектируется на A1C1D в центр O.
Это означает, что плоскость A1C1D перпендикулярна BD1, и диагональ BD1 пересекает эту плоскость в центре O правильного треугольника A1C1D (потому что в точке O можно провести только один перпендикуляр к плоскости A1C1D).
Поэтому искомое расстояние равно OC1, то есть радиусу окружности, описанной вокруг правильного треугольника A1C1D со стороной c√2; то есть c√(2/3) = c√6/3;
(Легко проверить, что любой выбор равнозначен, можно искать расстояние от C1 до A1C или от D до A1C, это все одно и то же :). Легко-то - легко, а почему? :) )