Рассматриваем прямоугольную трапецию ABCD, где A прямой угол Диагональ AC является биссектрисой по условию, соответственно: Угол BAC = угол CAD = 90 / 2 = 45 Прямая AC является секущей при параллельных прямых BC и AD, соответственно: Угол BCA = угол BAC = 45 Т.к. эти углы равны, треугольник ABC является равнобедренным, соответственно: AB = BC = 12 Найдем площадь трапеции по формуле:
Проведем высоту к основанию=36. По св-ву высота-она же медиана, значит точка падения высоты -сер-на основания. в рез. мы получим 2 р/б треугольника у которых гипотенуза-боковая сторона тр. а катеты: высота и половина основания. По св-ву р/б тр. углы при основании равны =а 2а+120=180 2а=60 а=30 по св-ву в прямоугольном треугольнике катет (она же высота) лежащий напротив угла в 30 градусов =1/2 гипотенузы =1/2*с где с -боковая сторона тогда площадь треугольника равна=1/2*h*a=1/2*1/2*c*36=9c но площадь треугольника также равна =1/2b*b*sin120=1/2b^2*sqrt(3)/2 1/2c^2*sqrt(3)/2=9c c=36/sqrt(3)
Решение умных людей ) не мое , но все же 1. строим тр-к авс с углами альфа (вершина а) и бета (вершина с) при основании. 2. строим биссектрисы углов а и с. 3. радиусом св с центром в точке с проводим полуокружность с пересечением стороны ас в точке d. дугу dв откладываем вправо от точки в и еще откладываем половину дуги угла бета. получили точку м. угол dсм равен 2,5 бета. 4. радиусом сm, с центром в т. а проводим дугу угла альфа. 5. измеряем дугу половины угла альфа. 6. эту дугу откладываем по дуге угла мсb от точки м в сторону точки в. получили точку n. 7. угол acn = 2,5 бета - 0,5 альфа.
Диагональ AC является биссектрисой по условию, соответственно:
Угол BAC = угол CAD = 90 / 2 = 45
Прямая AC является секущей при параллельных прямых BC и AD, соответственно:
Угол BCA = угол BAC = 45
Т.к. эти углы равны, треугольник ABC является равнобедренным, соответственно:
AB = BC = 12
Найдем площадь трапеции по формуле:
ответ: 180 квадратных сантиметров