Имеем равнобедренный треугольник АВС, АВ = ВС = 10. Медиана АМ к стороне ВС равна √153. Медиана к основанию - это высота ВД.
Медиана разбивает треугольник на 2 равновеликих по площади. Тогда S(АВС) = 2S(АВМ). Площадь треугольника АВМ находим по формуле Герона: S = √(p(p-a)(p-b)(p-c)). Полупериметр р = (10+5+√153)/2 = (15+√153)/2 ≈ 13,684658. Подставив данные, получаем S(АВМ) = 24. Тогда S(АВС) = 2*24 = 48.
Обозначим АД - половину стороны АС - за х. Высота ВД это Н = √(10² - х²) = √(100 - х²).
Тогда площадь треугольника АВС равна: S(АВС) = (1/2)*2x*H = х√(100-х²) = 48. Возведём обе части в квадрат. х²(100-х²) = 48². Заменим х² на у. Получаем квадратное уравнение: у² - 100у + 2304 = 0. Квадратное уравнение, решаем относительно y: Ищем дискриминант: D=(-100)^2-4*1*2304=10000-4*2304=10000-9216=784;Дискриминант больше 0, уравнение имеет 2 корня: y_1=(√784-(-100))/(2*1)=(28-(-100))/2=(28+100)/2=128/2=64;y_2=(-√784-(-100))/(2*1)=(-28-(-100))/2=(-28+100)/2=72/2=36.
Отсюда находим 2 значения х = 8 и х = 6. Но второй ответ не принимаем, так как медиана АМ получается равной √97.
ответ: длина медианы, проведенной к ОСНОВАНИЮ треугольника, равна √(100-64) = √36 = 6.
Так как призма прямая и в основании квадрат, все углы между ребрами прямые. Между пересекающимися боковым ребром и диагональю основания, а так же пересекающимися стороной основания и диагональю боковой грани уголы прямые (если прямая перпендикулярна плоскости, то она перпендикулярна любой прямой в этой плоскости, проходящей через точку пересечения). По теореме Пифагора находим: (17^2-15^2)=64 - квадрат диагонали основания. 64/2 = 32 - квадрат стороны основания. 32 + 15^2 = 32+225 =257 - квадрат диагонали боковой грани \|257 (см) - диагональ боковой грани
Вопрос в том какие стороны равны?
тогда ответ Б