Высота прямоугольного треугольника разделяет на две треугольник. 1-го треугольника выписанные круга радиус равно на 1. а второго треугольника радиус выписанный круг равен на 2. на сколько равен данный треугольника радиус выписанный круг
Ну, все три треугольника подобны между собой. Поэтому r2/r1 = b/a; r/r1 = c/a; то есть, если построить треугольник со сторонами r1, r2, r, то он тоже будет подобен исходному. откуда r^2 = r1^2 + r2^2 = 5; r = √5;
Из условия следует что треугольник AOB-равнобедренный а OM-его медиана проведённая к основанию.Следовательно OM-высота треугольника AOB. Тогда и медиана CM треугольника ABC является его высотой, значит, этот треугольник – равнобедренный: CA=CB. Из равнобедренности треугольников ACB и AOB следуют равенства углов при их основаниях,значит угол OBC= угол OAC. Поскольку BL-биссектриса угла ABC то AK-биссектриса угла BAC. По условию AK-высота треугольника ABC поэтому AB=AC. Таким образом AB=BC=AC то треугольник ABC-равносторонний.
опустим высоту и рассмотрим прямоугольный треугольник, образованный высотой, боковой стороной и частью большего основания трапеции. по теореме Пифагора находим меленький отрезок на большем основании трапеции 13 ²=12²+х² х²=13²-12² х²=169-144 х²=25 х=5 т.к. это трапеция равнобедренная, с двух сторон будут одинаковые отрезки отрезки, значит, большее основание будет равно: 5+5+7=17 (см) Площадь трапеции равна: средняя линия*высоту. Средняя линия равна: (7+17)/2=12(см) Отсюда площадь равна: 12*12=144 (см²)
r2/r1 = b/a;
r/r1 = c/a;
то есть, если построить треугольник со сторонами r1, r2, r, то он тоже будет подобен исходному.
откуда r^2 = r1^2 + r2^2 = 5; r = √5;