Объяснение:
1) АД и ВД гипотезы равных прямоугольных треугольников т.к. в основании правильный ∆ (АС=ВС по условию;СД--общая; СД и ∆АВС перпендикулярны по условию =>
АД=ВД=√(СД^2+АС^2)
АД =ВД = √((16√3)^2+16^2)=32
2). АК и ВК ∆АОК и ∆ВОК
т.к. ∆АВС равносторонний медиана является биссектрисой и высотой
=> ОА=ОВ = 2/3 от длины медианы
ОК общая => ∆АОК =∆ВОК => АК=ВК
∆АВО равнобедренный основание АВ=16√3. <АОВ=120°; ОА=ОВ
АВ^2= 2ОА^2 - 2*АО^2*Cos120°
АВ^2 = 2АО^2(1-Cos120°)
АО^2 = АВ^2/(2*(1-Cos120°)
АО^2 = (16√3)^2/ (2*(1-Cos120°))
АК=ВК = √( ОК^2 + АО^2)
ОК ^2= 12^2= 144
Представляем и считаем, арифметику самостоятельно.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Из прямоугольного ΔACH по теореме Пифагора:
a² = h² + a₁² = 6² + 2² = 36 + 4 = 40; a = √40 = 2√10
Катет AC = 2√10 см/
Из прямоугольного ΔBCH по теореме Пифагора:
b² = h² + b₁² = 6² + 18² = 36 + 324 = 360; b = √360 = 6√10
Катет BC = 6√10 см.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
r = (1/2) / cos 30° = (1*2) / (2*√3) = 1 / √3.
Высоту тетраэдра находим по Пифагору:
H = √(1² - (1/√3)²) = √(2/3).
Теперь рассмотрим осевое сечение шара, проходящее через ребро тетраэдра.
Высота в прямоугольном треугольнике (она же радиус r), проведенная из вершины прямого угла, делит его на два подобных.
Из подобия запишем пропорцию:
H/1 = 1/D. Отсюда D = 1/H = 1 / (√(2/3)) = √(3/2).
Объём шара равен V = (1/6)π*D³ = (1/6)π*(3/2)*(√(3/2) = 0,96191.