М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Angelika200614
Angelika200614
12.06.2022 12:25 •  Геометрия

Вшар вписан тетраэдр с ребром равным 1 см. определите объём шара.

👇
Ответ:
Teacher991
Teacher991
12.06.2022
Радиус окружности, в которую вписано основание тетраэдра находим из прямоугольного треугольника, где гипотенуза - искомый радиус, а катет - половина ребра. Угол между ними 30°.
r = (1/2) / cos 30° = (1*2) / (2*√3) = 1 / √3.
Высоту тетраэдра находим по Пифагору:
H = √(1² - (1/√3)²) = √(2/3).
Теперь рассмотрим осевое сечение шара, проходящее через ребро тетраэдра. 
Высота в прямоугольном треугольнике (она же радиус r), проведенная из вершины прямого угла, делит его на два подобных.
Из подобия запишем пропорцию:
H/1 = 1/D. Отсюда D = 1/H = 1 / (√(2/3)) = √(3/2).
Объём шара равен V = (1/6)π*D³ = (1/6)π*(3/2)*(√(3/2) = 0,96191.
4,7(3 оценок)
Открыть все ответы
Ответ:
Timoha233
Timoha233
12.06.2022

Объяснение:

1) АД и ВД гипотезы равных прямоугольных треугольников т.к. в основании правильный ∆ (АС=ВС по условию;СД--общая; СД и ∆АВС перпендикулярны по условию =>

АД=ВД=√(СД^2+АС^2)

АД =ВД = √((16√3)^2+16^2)=32

2). АК и ВК ∆АОК и ∆ВОК

т.к. ∆АВС равносторонний медиана является биссектрисой и высотой

=> ОА=ОВ = 2/3 от длины медианы

ОК общая => ∆АОК =∆ВОК => АК=ВК

∆АВО равнобедренный основание АВ=16√3. <АОВ=120°; ОА=ОВ

АВ^2= 2ОА^2 - 2*АО^2*Cos120°

АВ^2 = 2АО^2(1-Cos120°)

АО^2 = АВ^2/(2*(1-Cos120°)

АО^2 = (16√3)^2/ (2*(1-Cos120°))

АК=ВК = √( ОК^2 + АО^2)

ОК ^2= 12^2= 144

Представляем и считаем, арифметику самостоятельно.

4,8(3 оценок)
Ответ:
Кириджа114
Кириджа114
12.06.2022

Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.

Объяснение:

Рисунок прилагается.

Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.

Найти катеты AC и BC.

Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.

Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.

h² = a₁*b₁ = 2 * 18 = 36;   h = 6

⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.

Из прямоугольного ΔACH по теореме Пифагора:

a² = h² + a₁² = 6²  + 2² = 36 + 4 = 40;   a = √40 = 2√10

Катет AC = 2√10 см/

Из прямоугольного ΔBCH по теореме Пифагора:

b² = h² + b₁² = 6²  + 18² = 36 + 324 = 360;   b = √360 = 6√10

Катет BC = 6√10 см.

Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.


Проекція катетів прямокутного трикутника 2 і 18 см. Знайти катети​
4,8(54 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ