тогда углы при основании <Вп=(180-120) /2 = 30
углы при основании являются вписанными <Вп - опираются на хорды ( боковая сторона)
на эту же хорду/сторону опирается центральный угол <Цн
центральный угол в 2 раза больше вписанного <Цн =2* <Вп = 2*30=60 град
из центра описанной окружности боковые стороны видны под углом 60 град
основание видно под углом 2*<Цн =2*60=120 град
2.Треугольник АВС,
уголА=36,
уголС=48,
уголВ=180-36-48=96,
центр вписанной окружности О лежит на пересечении биссекрис, треугольник АОС,
уголАОС=180-1/2уголА-1/2уголС=180-18-24=138 - видна сторона АС, треугольник АОВ,
уголАОВ=180-1/2уголА-1/2уголВ=180-18-48=114-видна сторона АВ,
треугольник ВОС, уголВОС=180-1/2уголС-1/2уголВ=180-24-48=108 - видна стгорона ВС
3.четырехугольник АВСД вписан в окружность, уголА/уголВ/уголС=3/4/6=3х/4х/6х,
около четырехугольника можно описать окружность при условии что сумма противоположных углов=180,
уголА+уголС=180=уголВ+уголД, 3х+6х=4х+уголД, уголД=9х-4х=5х, 3х+6х=180, х=20, уголА=3*20=60, уголВ=4*20=80, уголС=6*20=120, уголД=5*20=100
4.AB+DC=AD+BC P=48 48:2=24 AB+DC=24 AD+BC=24 x+4 - AB x - CD x+x+4=24 x=10 14=AB 10=CD 1y - BC 2y - AD 1y+2y=24 y=8 8=BC 16=AD
Пусть дан треугольник АВС: АВ=ВС, АМ- биссектриса.
Тогда ВМ=25см, МС=30 см или ВМ=30 см, МС=25. Но в любом случае ВС=25+30=55 (см)
По свойству биссектрисы АС: АВ= МС:ВМ
а)ВМ=25 см, МС=30 см, тогда АС:АВ=30/25, АС:АВ=6/5.
Обозначим АС=6х, АВ=5х
Но АВ=ВС, 5х=55, х=11, тогда АС=66.
сos A=cos C=33|55=3|5>cos 60⁰=0,5.
Угол А меньше 60⁰
Рассмотрим треугольник АВК ( ВК- высота ΔАВС):
По свойству биссектрисы угла А треугольника АВК:
АВ:АК=ВT:TK (T- точка пересечения биссектрисы угла А с высотой ВК)
АВ=55см, АК=33 см, тогда BT:TK=55:33 или биссектриса делит высоту в отношении 5:3.
б) ВМ=30 см, МС=25 см, тогда АС:АВ=25/30, АС:АВ=5/6,
АС=5х, АВ=6х, АВ=ВС=55 см. 6х=55, х=55/6 . АС=275/6 АК=275/12
cos A= AK/АВ=275/(55*12)=5/12<0,5= cos 60⁰
значит угол А больше 60⁰ и этот случай не рассматриваем.
ответ 1) 5:3
2) Рассмотрим треугольник АВС: АВ=ВС. ВК- высота. ВT=25 см, ТК=7 см.
Точка Т - равноудалена от концов боковой стороны, то есть АТ=ВТ=25 см.
Рассмотрим прямоугольный треугольник АТК: АТ=25 см, ТК=7 см. По теореме Пифагора найдем АК²=АТ²-ТК²=25²-7²=(25-7)(25+7)=18·32=24², АК=24 см
Тогда основание АС=2АК=48 см, высота ВК=25+7=32 (см)
По теореме Пифагора АВ²=АК²+ВК²=24²+32²=1600=40².
Боковая сторона треугольника 40 см, основание 48 см.
Периметр 40+40+48=128 см
ответ. Р=128 см.