Решить . в остроугольном треугольнике авс, площадь которого равна 6 √10, проведена медиана вм. известно, что расстояние от точки с до прямой вм равно 12 √10/11, ав равно √10. найти сторону ас.
Несколько запутанная задача. Если обозначить (чтобы не тащить "длинные корни") AB = a; BM = m; AC = b; расстояние от С до BM = p; То Sbmc = S/2 = m*p/2; m = S/p; то есть можно считать m заданным. В числах m = 11/2; Пусть ∠ABM = α; тогда Sabm = S/2 = a*m*sin(α)/2; sin(α) = S/(a*m) = p/a; (любопытно!) cos(α) = √(1 - (p/a)^2); AM^2 = (b/2)^2 = a^2 + m^2 - 2*a*m*cos(α); а это уже решение было бы, если бы все это было возможно. В условии p > a, что никак не может быть. Если из точки A на BM опустить перпендикуляр, то он как раз равен p (расстояния от A до BM и от С до BM равны). Таким соотношение sin(α) = p/a; получается сразу. А катет не может быть больше гипотенузы.
Две параллельные прямые пересекаются третьей прямой, поэтому выполняются следующие положения: углы 2 и 4 равны как вертикальные, сумма 4 и вертикального угла углу 1 равна 180° как внутренние односторонние, значит сумма углов 1 и 2 равна 180°, угол 1 составляет 5 частей, угол 2 - 4 части, всего 9 частей, тогда 1 часть 180°: 9 = 20°. угол 1 5·20° = 100°, угол 2 - 4·20° = 80°. угол 4 равен 80°(как вертикальный углу 2). угол 3 и угол 4 – смежные, их сумма равна 180°. угол 3 равен 180° - угол 4 = 180° -80° = 100°.
Вот такое нахальное решение. ну уж простите : )пусть катеты a и b, гипотенуза с. я строю квадрат со сторонами (a + b), и дальше обхожу все 4 стороны по часовой стрелке, откладывая отрезок а от вершины. (пояснение.построенный со стороной (a + b) с вершинами аbcd, а - "левая нижняя" вершина. от а вверх - вдоль ав, откладывается а, потом от в вправо - вдоль вс откладывается а, потом от с вниз, вдоль cd, откладывается а, и от d вдоль da откладывается а.)все эти точки соединяются.получился квадрат со стороной с, вписанный в квадрат со стороной (a+b).ясно, что центры этих квадратов . это автоматически доказывает то, что надо в . (если не ясно, постройте там пару треугольников из диагоналей обоих квадратов и отрезков длины а и докажите их равенство. на самом деле не надо ничего доказывать - эта фигура из двух квадратов переходит сама в себя при повороте вокруг центра большого квадрата на 90 градусов. поэтому центр "вписанного" квадрата совпадает с центром большого, то есть лежит на биссктрисе прямого угла большого квадрата. ну, и биссектрисе прямого угла исходного треугольника, само собой - это одно и то же. этих треугольников там даже четыре, а не один : ), можно любой выбрать за исходный.)
То Sbmc = S/2 = m*p/2; m = S/p;
то есть можно считать m заданным. В числах m = 11/2;
Пусть ∠ABM = α; тогда Sabm = S/2 = a*m*sin(α)/2;
sin(α) = S/(a*m) = p/a; (любопытно!)
cos(α) = √(1 - (p/a)^2);
AM^2 = (b/2)^2 = a^2 + m^2 - 2*a*m*cos(α); а это уже решение
было бы, если бы все это было возможно.
В условии p > a, что никак не может быть.
Если из точки A на BM опустить перпендикуляр, то он как раз равен p (расстояния от A до BM и от С до BM равны).
Таким соотношение sin(α) = p/a; получается сразу.
А катет не может быть больше гипотенузы.