ответ: Дан треугольник АВС. Из точки D на стороне АС проведен серединный перпендикуляр к стороне АВ. Также из этой точки проведена линия к вершине треугольника В. Таким образом Треугольник АВС разделен на два треугольника - АВD и ВСD. Рассмотрим треугольник АВD. Серединный перпендикуляр треугольника АВС является одновременно высотой и медианой треугольника АВD. Значит, треугольник ABD равнобедренный, и AD=BD.
Таким образом, длина стороны АС = AD + BC = BD + BC.
Периметр треугольника BDC = AC + BC = 14 см.
ответ: Дан треугольник АВС. Из точки D на стороне АС проведен серединный перпендикуляр к стороне АВ. Также из этой точки проведена линия к вершине треугольника В. Таким образом Треугольник АВС разделен на два треугольника - АВD и ВСD. Рассмотрим треугольник АВD. Серединный перпендикуляр треугольника АВС является одновременно высотой и медианой треугольника АВD. Значит, треугольник ABD равнобедренный, и AD=BD.
Таким образом, длина стороны АС = AD + BC = BD + BC.
Периметр треугольника BDC = AC + BC = 14 см.
1) По т. Пифагора найдем гипотенузу АВ=13
2)DO=OB=R так как радиусы
3) DO перпендикулярно катету АС (по свойству радиуса проведенного к точке касания) Следовательно DO параллельно CB и значит треугольник AOD подобен треугольнику ABC.
4) AO=13-R, из подобия треугольников составим пропорцию:
BC/DO=AB/AO
5/R=13/(13-R) откуда найдем R=65/18