Треугольник abc задан координатами своих вершин: a(2, 4) b(9, 5) c(6. 0). найти: а)уравнение и длину высоты bd б)уравнение и длину медианы bm в)угол f между высотой bd и медианой bm г)уравнение биссектрис внутреннего и внешнего углов при вершине a
Треугольник ABC задан координатами своих вершин: A(2, 4) B(9, 5) C(6. 0). Найдем: а)уравнение и длину высоты BD Уравнение прямой проходящей через две точки с координатами (х₁;у₁) и (х₂;у₂) Уравнение АС: -4(x-2)=4(y-2) x+y-6=0 n₁(1;1)- нормальный вектор прямой АС. Координаты нормального вектора прямой ВД n₂(-1;1) так как прямые перпендикулярны, то нормальные векторы ортогональны, значит их скалярное произведение должно быть равно 0. Уравнение прямой ВД : -х+у+с=0 значение с найдем, подставив в данное уравнение координаты точки В. -9+5+с=0, с=4 Уравнение прямой ВД: -х+у+4=0 Найдем координату точки Д как точки пересечения прямых АС и ВД, решаем систему уравнений: Сложим уравнения: 2у-2=0. у=1, тогда х=-у+6=-1+6=5 Координата точки Д (5;1) Длина ВД=√(5-9)²+(1-5)²=√32=4√2
б)уравнение и длину медианы BM Координаты точки М как середины отрезка АС: х=(2+6)/2, у=(4+0)/2 М(4;2) Уравнение прямой ВМ как прямой, проходящей через две точки, заданные своими координатами имеет вид: или 3х-5у-2=0 ВМ=√(4-9)²+(2-5)²=√34 в)угол α между высотой BD и медианой BM Вектор BD имеет координаты (-4;-4), вектор ВМ имеет координаты (-5;-3) BD·BM=|BD|·|BM|·cosα ⇒ г)уравнение биссектрис внутреннего и внешнего углов при вершине A длина стороны АВ=√(9-2)²+(5-4)²=√50, длина стороны АС=√(6-2)²+(0-4)²=4√2 Биссектриса АК делит сторону на отрезки, пропорциональные прилежащим сторонам: ВК:КС=АВ:АС, ВК:ВС=(√50):(4√2)=5/4 Координаты точки К, как точки делящей отрезок ВС в отношении 5|4 Уравнение биссектрисы АК как прямой проходящей через две точки А и К: нормальный вектор прямой АК - биссектрисы внутренннего угла А: n₃(1:3) нормальный вектор биссектрисы внешнего угла, перпендикулярной биссектрисе АК, имеет координаты n₄=(-3:1), так как должно быть: n₃·n₄=0 Тогда уравнение биссектрисы внешнего угла -3х+у+с=0 значение с найдем подставив в данное уравнение координаты точки А: 3(-2)+4+с=0, с=2 уравнение биссектрисы внешнего угла -3х+у+2=0
Треугольник АМВ будет прямоугольным, если углы между векторами МA и МB,или AM и АВ, или ВМ и ВА будет прямыми. Координаты точек:A(1;3;2), B(-1;3;-4), М(Мх;0;0). Цитата:"Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю". Проверим возможность перпендикулярности векторов МА и МB (вершина в точке М). Найдем координаты векторов (координаты вектора находятся, как разность координат КОНЦА и НАЧАЛА вектора): МА{(1-Mx);3;2}, и MB{(-1-Mx);3;-4}.Их скалярное произведение (сумма произведений их соответствующих координат): (1-Мх)*(-1-Мх)+(3*3)+(2*(-4)) = -1+Мх-Мх+Мх²+1=Мх². По условию перпендикулярности: Мх²=0. Мх=0. То есть вершина М лежит на оси 0Х при координатах: М(0;0;0). Проверим возможность перпендикулярности векторов АМ и АВ (вершина в точке А). Координаты векторов АВ{-2;0;-6}, АМ{(Mx-1);-3;-2}. Их скалярное произведение: (Мх-1)*(-2)+0+12 = -2*Mx+2+12 =-2*Mx+14. По условию перпендикулярности:-2*Mx+14=0. Отсюда Мх=7. Проверим возможность перпендикулярности векторов BМ и BA (вершина в точке В). Координаты векторов BA{2;0;6}, BМ{(Mx+1);-3;4} Их скалярное произведение: (Мх+1)*2+0+24 = 2*Mx+26. По условию перпендикулярности: 2*Mx+26=0. Отсюда Mx=-13. ответ: М(0;0;0), M(7;0;0) и М(-13;0;0)
Задача может решать двумя 1) Для начала надо решить эту задачу, а затем поделить ответы на 2 и всё сложить. 3х - 1 сторона. 4х - 2 сторона. 5х - 3 сторона. 48 см - Р данного треугольника. Составим и решим уравнение: 3х+4х+5х = 48; 12х = 48; х = 4. 3×4=12 (см) - 1 сторона. 4×4=16 (см) - 2 сторона. 5×4=20 (см) - 3 сторона. 1.12÷2 = 6 - середина 1 отрезка. 2.16÷2 = 8 - середина 2 отрезка. 3.20÷2 =10. - середина 3 отрезка. 4.6+8+10 = 24 - Р треуг., вершины которого равны середине сторон. ответ: 24. 2) Вообще, можно просто поделить Р первого данного нам треугольника на 2, то бишь: 48÷2 = 24. ответ: 24. Но Вам мой совет, если Вы всё-таки спросили это для домашней работы, думаю, лучше всё-таки использовать первый вариант.
Найдем:
а)уравнение и длину высоты BD
Уравнение прямой проходящей через две точки с координатами (х₁;у₁) и (х₂;у₂)
Уравнение АС:
-4(x-2)=4(y-2)
x+y-6=0
n₁(1;1)- нормальный вектор прямой АС.
Координаты нормального вектора прямой ВД n₂(-1;1)
так как прямые перпендикулярны, то нормальные векторы ортогональны, значит их скалярное произведение должно быть равно 0.
Уравнение прямой ВД : -х+у+с=0 значение с найдем, подставив в данное уравнение координаты точки В.
-9+5+с=0, с=4
Уравнение прямой ВД: -х+у+4=0
Найдем координату точки Д как точки пересечения прямых АС и ВД, решаем систему уравнений:
Сложим уравнения: 2у-2=0. у=1, тогда х=-у+6=-1+6=5
Координата точки Д (5;1) Длина ВД=√(5-9)²+(1-5)²=√32=4√2
б)уравнение и длину медианы BM
Координаты точки М как середины отрезка АС: х=(2+6)/2, у=(4+0)/2
М(4;2)
Уравнение прямой ВМ как прямой, проходящей через две точки, заданные своими координатами имеет вид:
ВМ=√(4-9)²+(2-5)²=√34
в)угол α между высотой BD и медианой BM
Вектор BD имеет координаты (-4;-4), вектор ВМ имеет координаты (-5;-3)
BD·BM=|BD|·|BM|·cosα ⇒
г)уравнение биссектрис внутреннего и внешнего углов при вершине A
длина стороны АВ=√(9-2)²+(5-4)²=√50, длина стороны АС=√(6-2)²+(0-4)²=4√2
Биссектриса АК делит сторону на отрезки, пропорциональные прилежащим сторонам:
ВК:КС=АВ:АС, ВК:ВС=(√50):(4√2)=5/4
Координаты точки К, как точки делящей отрезок ВС в отношении 5|4
Уравнение биссектрисы АК как прямой проходящей через две точки А и К:
нормальный вектор прямой АК - биссектрисы внутренннего угла А: n₃(1:3)
нормальный вектор биссектрисы внешнего угла, перпендикулярной биссектрисе АК, имеет координаты n₄=(-3:1), так как должно быть: n₃·n₄=0
Тогда уравнение биссектрисы внешнего угла -3х+у+с=0
значение с найдем подставив в данное уравнение координаты точки А:
3(-2)+4+с=0, с=2
уравнение биссектрисы внешнего угла -3х+у+2=0