В трапеции АВСD диагонали делят ее на треугольники, из которых треугольники ВОС и АОD - подобны , так как <OAD=<OBC, <ODA=<OBC (как внутренние накрест лежащие при параллельных ВС и АD), а <BOC=<AOD (как вертикальные). Из подобия имеем: АО/ОС=AD/ВС=5/2. Значит ВС=(2/5)*AD. Средняя линия трапеции равна полусумме оснований, то есть ВС+AD=14. И ВС=14-AD. тогда (14-AD) = (2/5)*AD, откуда AD=10см. ответ: большее основание трапеции равно 10см.
Пусть SO высота пирамиды. Для грани SAB построим линейный угол двугранного угла. Для этого проведем из точки О перпендикуляр ОН к ребру основания АВ. ОН - проекция SH на плоскость основания, значит SH⊥AB по теореме о трех перпендикулярах. ∠SHO = 60° - линейный угол двугранного угла.
Аналогично строим линейные углы наклона всех боковых граней.
SΔaob = АВ · ОН / 2 SΔsab = AB · SH / 2
Saob / Ssab = OH / SH = cos∠SHO = cos60° = 1/2
Saob = Ssab/2
Так как все боковые грани наклонены под одним углом, для каждой боковой грани и ее проекции мы получим такое же отношение. Значит, площадь основания равна половине площади боковой поверхности: Sосн = Sбок/2 = 36/2 = 18
Пусть SO высота пирамиды. Для грани SAB построим линейный угол двугранного угла. Для этого проведем из точки О перпендикуляр ОН к ребру основания АВ. ОН - проекция SH на плоскость основания, значит SH⊥AB по теореме о трех перпендикулярах. ∠SHO = 60° - линейный угол двугранного угла.
Аналогично строим линейные углы наклона всех боковых граней.
SΔaob = АВ · ОН / 2 SΔsab = AB · SH / 2
Saob / Ssab = OH / SH = cos∠SHO = cos60° = 1/2
Saob = Ssab/2
Так как все боковые грани наклонены под одним углом, для каждой боковой грани и ее проекции мы получим такое же отношение. Значит, площадь основания равна половине площади боковой поверхности: Sосн = Sбок/2 = 36/2 = 18
Из подобия имеем: АО/ОС=AD/ВС=5/2. Значит ВС=(2/5)*AD.
Средняя линия трапеции равна полусумме оснований, то есть ВС+AD=14. И ВС=14-AD. тогда (14-AD) = (2/5)*AD, откуда
AD=10см.
ответ: большее основание трапеции равно 10см.