Впрямоугольной трапеции abcd с основаниями ad=9 и bc=4, сторона ab перпендикулярна основаниям и диагонали ac и bd перпендикулярны друг другу. найти: 1. боковые стороны 2. расстояние от середины стороны ab до прямой cd
См. рис.1 Треугольники ВКС и AKD подобны по двум углам: угол СВК равен углу BDA- внутренние накрест лежащие при параллельных прямых ВС и AВ и секущей BD. угол ВСК равен углу CAD-внутренние накрест лежащие при параллельных прямых ВС и AВ и секущей АС. Из подобия треугольников СК:АК=ВС:AD=4:9. Пусть СК=х, тогда АК=9х/4 По теореме Пифагора из прямоугольного треугольника ВКС: ВК²=ВС²-КС²=16-х² Из прямоугольного треугольника АВК: АВ²=ВК²+АК²=16-х²+81х²/16=16+65х²/16. Из прямоугольного треугольника АВС: АС²=АВ²+ВС² (х+9х/4)²=16+65х²/16+16, (13х/4)²-65х²/16=32, 104х²/16=32, 52х²=256 х²=256/52 Тогда АВ²=16+(65·256)/(52·16)=36 АВ=6 По теореме Пифагора из треугольника СНD (см. рисунок 2): CD²=5²+6²=√61 Продолжим стороны трапеции до пересечения в точке Е Треугольники ВСЕ и СНД подобны по двум углам. ВЕ:СН=4:5 ⇒ВЕ=4,8 Середина АВ-точка М. АМ=МВ=3. ВМ=4,8+3=7,8 В треугольнике СНD sin HСВ=5/√61 sin ВЕС=sin HCB=5/√61 Из треугольника ВМТ: МТ=ВМ·sin ВЕС=7,8·5√61=39/√61
1. мой дед (летать, никогда самолете, и он никогда не намеревался делать так. 2. джейн еще не пришла. я (счас) нее, начиная с полудня, но она до сих пор (приезжают, не) 3. во всем мире есть (быть) 14 гор, которые (достижения) выше 8000 метров (26,247 футов). 4. у меня впереди долгий путь меня завтра, так что я думаю, мне лучше пойти спать. но позвольте мне сказать до свидания сейчас, потому что я не увижу тебя утром. я (уйти, уже) вы (вам) . 5. сейчас мы (нас) . температуру (быть) 90-х верхних (верхний 30 по цельсию) в течение последних шести дней. 6. вчера вечером я (го) вечеринку. когда я (вам) , комната была полна людей. некоторые из них (танцев) и другим (говорить) молодая женщина (стенд) . я (встретиться, никогда не) , так я (ввести) ей. 7. около трех вчера днем, джессика (ложь) постели, читая книгу. вдруг она (слышать) шум и (вам) , чтобы увидеть, что это было. она (смотри) окна. грузовик (сзади, просто) ее новой машине! 8. в следующем месяце у меня отпуск на неделю. я (план) отправиться в путешествие. во-первых, я (идти) мэдисоне, штат висконсин, чтобы посетить моего брата. после того, как я (оставить) , я (идти) чикаго, чтобы посмотреть друга, который (исследования) университете там. она (живая) чикаго в течение трех лет, так она (знаю) путь вокруг города. она (обещание) меня на многие интересные места. я (быть, никогда не) чикаго, так что я (смотри) идти туда. 9. вчера при мне (сидишь) классе я (вам) . человек, который (сидеть) со мной сказал мне, чтобы держать меня дыхание. я (попробовать) , но это не сработало. инструктор ( и я не хотел мешать ему, поэтому я просто сидел, пытаясь тихо икать. наконец, после того, как я (иккинг) пять минут, я ( подъем) руки и (простите) из класса, чтобы пойти попить воды. 10. погода была ужасна в последнее время. я (дождь) на два дня, и температура (перепад) . это (быть) сегодня холодно. буквально три дня назад, солнце (светить) погода (быть) . погода, конечно (изменение) здесь. я никогда не знаю, чего ожидать. кто знает? когда я (услуга) утром, может быть, он (снег) по переводу сделай сам.
1) - 3 2) (Многооо очень) Сумма двух острых углов прямоугольного треугольника равна 90º Сумма углов треугольника равна 180º, а прямой угол равен 90º, поэтому сумма двух острых углов прямоугольного треугольника равна 90º. Катет прямоугольного треугольника, лежащий против угла в 30º, равен половине гипотенузы. Рассмотрим прямоугольный треугольник ABC, в котором A — прямой, B = 30º и, значит, C = 60º. Докажем, что AC = 1/2 BC. Приложим у треугольнику ABC равный ему треугольник ABD, как показано на рисунке 1. Получим треугольник BCD, в котором B = D = 60º, поэтому DC = BC. Но AC = 1/2 DC. Следовательно, AC = 1/2 BC, что и требовалось доказать. Если катет прямоугольного треугольника равен половине гипотенузы, то угол, лежащий против этого катета, равен 30º. 3)Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы, медианы и высоты, проведённые из этих углов. Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию, совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии. В равнобедренном треугольнике углы при основании равны. 4)Ввысота может лежать вне треугольника, а остальное только внутри 5) Не знаю.
Треугольники ВКС и AKD подобны по двум углам:
угол СВК равен углу BDA- внутренние накрест лежащие при параллельных прямых ВС и AВ и секущей BD.
угол ВСК равен углу CAD-внутренние накрест лежащие при параллельных прямых ВС и AВ и секущей АС.
Из подобия треугольников СК:АК=ВС:AD=4:9.
Пусть СК=х, тогда АК=9х/4
По теореме Пифагора из прямоугольного треугольника ВКС: ВК²=ВС²-КС²=16-х²
Из прямоугольного треугольника АВК: АВ²=ВК²+АК²=16-х²+81х²/16=16+65х²/16.
Из прямоугольного треугольника АВС: АС²=АВ²+ВС²
(х+9х/4)²=16+65х²/16+16,
(13х/4)²-65х²/16=32,
104х²/16=32,
52х²=256
х²=256/52
Тогда АВ²=16+(65·256)/(52·16)=36
АВ=6
По теореме Пифагора из треугольника СНD (см. рисунок 2):
CD²=5²+6²=√61
Продолжим стороны трапеции до пересечения в точке Е
Треугольники ВСЕ и СНД подобны по двум углам.
ВЕ:СН=4:5 ⇒ВЕ=4,8
Середина АВ-точка М. АМ=МВ=3. ВМ=4,8+3=7,8
В треугольнике СНD sin HСВ=5/√61
sin ВЕС=sin HCB=5/√61
Из треугольника ВМТ: МТ=ВМ·sin ВЕС=7,8·5√61=39/√61