1)
Пусть К - точка пересечения хорды AC и диаметра BD.
OK=KB=R\2
OA=OB=OC=OD=R=AB=BC
AD=BD=корень((корень(3)*R\2)^2+(3*R\2)^2)=корень(3)*R
AK=BK=корень(3)\2*R
cos (KOA)=(R\2)\R=1\2
угол KOA=угол OBA=угол OBC=60 градусов
угол ФИС=60+60=120 градусов
В выпуклом вписанном четырёхугольнике сумма противоположных углов равна 180
поэтому угол ADB=180-120=60 градусов
Угол BAD= углу BCD=180\2=90 градусов
градусные меры дуг AB, BC, CD, AD... соотвественно равны углвой мере углов AOB(=60 градусов), BOC (=60 градусов), COD(180-60=120 градусов)
AOD (=120 градусов)
т.к ромб-параллелограмм с одинаковыми сторонами(AB=BC=CD=AD),то углы противоположные равные,тоесть BAD=BCD=80, ABC=ADC=360-bad-bcd=(360-80-80)/2=100 . если разбить ромб на треугольники,то получим 2 равнобедренных треугольника-ABD и BCD(АB=AD в треугольнике ABD)(BC=CD в треугольнике BCD). в них высоты CO и AO являются не только высотами,но и биссектриссами и медианами. т.к CO-биссектрисса,то угол BCO=DCO=80/2=40. раввнобедренный треугольник ADC состоит из 2 прямоугольных треугольников: AOD и COD. т.к OD-биссектрисса,то ADO=CDO=ADC/2=100/2=50. в треугольнике COD угол DOC-прямой (90),угол CDO-50,а DCO-40.
СВ²=ДВ*АВ ( соотношение в прямоугольном треугольнике)
(2√3)² = х (1+х) ⇒ х²+х-12=0 ⇒ х₁+х₂= - 1 , х₁*х₂ =-12 ⇒ х₁= -4 ∉по условию задачи х₂=3, значит, АВ=АД+ДВ , АВ= 1+3 = 4 см