Если площадь основания правильной четырехугольной пирамиды равна s, а боковое ребро наклонено к плоскости основания под углом альфа , то объем пирамиды равен
Пирамида, у которой основание квадрат и грани равные, равнобедренные треугольники, называется правильной четырехугольной пирамидой/ объем пирамиды V =1/3*h*a² Площадь основания S=a² Диагональ основания d=√2*a=√(2S) Из прямоугольного треугольника, в котором 1 катет - высота пирамиды h, 2 катет - 1/2 диагонали основания 1/2d и гипотенуза -боковое ребро b, найдем h=1/2d*sin α= 1/2*√(2S)*sin α V =1/3*h*a²=1/3*1/2*√(2S)*sin α*S=1/6*S√(2S)*sin α
Пусть АВС - треугольник, АД - медиана, проведенная из вершины А на сторону ВС, СЕ - медиана, проведенная из вершины С на сторону АВ. Медианы АД и СЕ пересекаются в точке М. Точка пересечения медиан делит каждую из медиан на две части в отношении 2:1, считая от вершины. Так как медианы равны, то равны и части медиан АМ=СМ и ЕМ=ДМ. Следовательно треугольники АЕМ и ДМС равны по двум сторонам и углу между ними (угол ЕМД=угол ДМС, как вертикальные углы) Значит стороны, лежащие против равных углов равны, то есть АЕ=ДС. Но АЕ - это половина стороны АВ, ДС - это половина стороны ВС, Значит АВ=ВС, треугольник АВС - равнобедренный.
KB⊥BC, AD||BC => KB⊥AD, ∠BKD=90 BO=OD (диагонали параллелограмма точкой пересечения делятся пополам) KO=OD (медиана, проведенная из вершины прямого угла, равна половине гипотенузы)
∠BEK=∠EKD, ∠EBD=∠BDK (накрест лежащие углы при AD||BC) △BOE~△KOD (по двум углам) BO/OD=OE/KO => BO=OE.
ИЛИ Средняя линия параллелограмма (и лежащая на ней точка пересечения диагоналей) делит всякий отрезок, соединяющий противоположные стороны, пополам (по теореме Фалеса). Диагонали четырехугольника BEDK делятся точкой пересечения пополам => BEDK - параллелограмм. В параллелограмме BEDK угол KBE - прямой => BEDK - прямоугольник. Диагонали прямоугольника равны => равны их половины, BO=OE.
объем пирамиды V =1/3*h*a²
Площадь основания S=a²
Диагональ основания d=√2*a=√(2S)
Из прямоугольного треугольника, в котором 1 катет - высота пирамиды h, 2 катет - 1/2 диагонали основания 1/2d и гипотенуза -боковое ребро b,
найдем h=1/2d*sin α= 1/2*√(2S)*sin α
V =1/3*h*a²=1/3*1/2*√(2S)*sin α*S=1/6*S√(2S)*sin α