В треугольнике АЕD по условию АЕ=ЕD. ∆ АЕD равнобедренный, углы при основании AD равны.
Примем углы при АD равными а.
По свойству внешнего угла треугольника ∠DEB=2a ( т.е. равен сумме внутренних не смежных с ним углов),
Сумма острых углов прямоугольного треугольника 90°. ⇒
В треугольнике BED ∠ В=90°-2а
Из суммы углов треугольника каждый из равных при основании АС углов равнобедренного треугольника АВС равен (180°- АВС):2
∠САВ=(180°-(90°-2а):2=45°+а
∠САВ=угол САD+a⇒
∠САD=CAB-a
Угол СAD=45°+a-a=45°
Из прямоугольного ΔАВН найдем АН =√АВ²-ВН²=√41²-40²=9
Нижнее основание АD=2AH+BC=18+BC
Средняя линия МК=(ВС+АD)/2, BC+AD=2MK=2*45=90
AD=90-BC
90-BC=18+BC
72=2BC
BC=36
AD=90-36=54