Биссектрисы углов a и c трапеции abcd пересекаются в точке p, а биссектрисы углов b и d — в точке q, отличной от p. докажите, что если отрезок pq параллелен основанию ad, то трапеция равнобокая.
Я даже не знаю как мне обьяснить пошагово решение этой задачи,но я попробую. Потому что метод довольно кондовый. Обозначенные углы равны как внутренние накрест лежащие и углы бьющиеся бессектрисой. Откуда треугольники ABF и CND равнобедренные. То бессектрисы AT и DR медианы и высоты.(BT=TF) (CR=RN) Треугольники BSC и NSF подобны по 2 углам. BS/SF=CS/SN поиграв с отношениями получим что ТS/SF=RS/SN То треугольники TSR и NSF подобны по 2 пропорциональным сторонам и равным вертикальным углам между ними. То углы крест накрест равны. То TR параллельно NF. ТR параллельно QP (QTRP-трапеция). Известным фактом является,что если диагонали трапеции состовляют с ее боковыми сторонами равные углы (в данном случае прямые) То она равнобочная. ТО есть угол P=Q то из соответственных углов Ф=Z ,то углы D=A. То наша трапеция равнобочная ЧТД
Диагональ основания по теореме Пифагора будет равна 13 см. Треугольник, образованный из высоты, диагонали основания и диагонали прямоугольного параллелепипеда будет прямоугольным и с острым углом 30 градусов. По определению: тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета (высота) к прилежащему (диагональ основания). Значит высота равна диагональ основания (13 см) умноженная на тангенс 30 градусов(корень из 3 деленное на 3). высота равна 13 корней из 3 деленных на 3 . Площадь боковой поверхности равна периметр основания, умноженный на высоту Р=2(5+12)=34 и площадь 34*13 корней из 3, деленных на 3
Подобные треугольники- треугольники, у которых все углы подобные, а стороны одного соответственно пропорциональны сторонам другого треугольника. 1)Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны. 2)Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны. 3)Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.
Обозначенные углы равны как внутренние накрест лежащие и углы бьющиеся бессектрисой. Откуда треугольники ABF и CND равнобедренные. То бессектрисы AT и DR медианы и высоты.(BT=TF) (CR=RN) Треугольники BSC и NSF подобны по 2 углам.
BS/SF=CS/SN поиграв с отношениями получим что
ТS/SF=RS/SN То треугольники TSR и NSF подобны по 2 пропорциональным сторонам и равным вертикальным углам между ними. То углы крест накрест равны. То TR параллельно NF.
ТR параллельно QP (QTRP-трапеция). Известным фактом является,что если диагонали трапеции состовляют с ее боковыми сторонами равные углы (в данном случае прямые) То она равнобочная.
ТО есть угол P=Q то из соответственных углов Ф=Z ,то углы D=A. То наша трапеция равнобочная
ЧТД