конечно, это скрещивающиеся прямые, но угол между ними очень даже есть :).
самое простое решение - векторное.
Пусть куб имеет сторону равную 1.
Пусть вектора АD = i ; AB = j ; AA1 = k ;
Модули единичных векторов i j k равны 1, и скалярные произведения ij = ik = jk = 0; поскольку эти вектора перпендикулярны друг другу.
Обозначим вектор АВ1 = x ; AC = y;
Вектор x = j + k
Вектор АС = i + j ; откуда вектор y = k - (i + j);
Скалярное произведение yx = k^2 - j^2 = 0;
то есть эти прямые перпендикулярны, угол между ними 90 градусов
Есть и очень простое геометрическое решение.
Если соединить середины ребер AD (точка М) и В1С1 (точка К) то МК II AB1. Кроме того, МК проходит через центр куба, так же как СА1, поэтому искомый угол - это угол между МК и СА1, лежащими в одной плоскости. При этом сечение куба этой плоскостью МА1КС - это ромб (все стороны равны), а МК и СА1 - его диагонали, поэтому они взаимно перпендикулярны.
Площадь осевого сечения цилиндра равна произведению диаметра его основания на высоту.
Поскольку отрезок, соединяющий центр верхнего основания с одним из концов данной хорды образует с осью цилиндра угол 45 градусов, высота цилиндра равна его радиусу r ( см.рисунок).
Площадь осевого сечения даного цилиндра равна
S=r·2r= 2r²
Чтобы найти радиус основания цилиндра, рассмотрим Δ МОВ. Этот треугольник - равносторонний, так как образован хордой и двумя радиусами, угол между которыми равен 60 °.
Высота этог трегольника 2√3, по формуле высоты равностороннего треугольника найдем сторону его а
(а√3):2=2√3, где а=r - сторона треугольника МОВ.
а√3 =2*2√3
а=4
Итак, радиус окружности основания равен 4 см, диаметр 8 см, высота цилиндра 4 см.
S осевого сечения=2r²=32 см²
по теореме высоты: 1*(x-1)=CD^2
по теореме пифагора:
CD^2=(2√3)^2-(x-1)^2=12-(x-1)^2
Откуда
12-(x-1)^2=x-1
12-x^2+2x-1=x-1
x^2-x-12=0
По виету подбором
x1=-3<0 не подходит.
x2=4
ответ:4