Из одной точки к прямой проведены перпендикуляр и две наклонные.найдите длину перпендикуляра,если наклоные относятся как 10: 17,а их проекции равны 12см. и 30см
Нет, ни шестиугольник, ни семиугольник не могут быть гранями правильного многогранника . ими могут быть правильные треугольники, квадраты, либо пятиугольники. других вариантов нет дело в том, что угол правильного n-угольника ( n≥6 ) меньше 120° но при каждой вершине должно быть не меньше 3 плоских углов и если бы такой правильный многогранник при n≥6 существовал, то сумма плоских углов при каждой вершине была ≥3•120°=360° но этого не может быть, потому как сумма всех плоских углов выпуклого многогранника при каждой вершине < 360°
Нет, ни шестиугольник, ни семиугольник не могут быть гранями правильного многогранника . ими могут быть правильные треугольники, квадраты, либо пятиугольники. других вариантов нет дело в том, что угол правильного n-угольника ( n≥6 ) меньше 120° но при каждой вершине должно быть не меньше 3 плоских углов и если бы такой правильный многогранник при n≥6 существовал, то сумма плоских углов при каждой вершине была ≥3•120°=360° но этого не может быть, потому как сумма всех плоских углов выпуклого многогранника при каждой вершине < 360°
по теореме Пифагора квадрат длины перпендикуляра H:
приравниваем - найдем
значит
H=16