Доказательством, что данные точки - это вершины пирамиды, служит несоответствие координат четвёртой точки уравнению плоскости, которой принадлежат другие три точки.
Составим уравнение плоскости, которой принадлежат точки А, В и С.
Пусть (х1, х2, х3), (у1, у2, у3) и (z1, z2, z3) – координаты первой, второй и третьей точки соответственно. Тогда уравнение плоскости определяется из уравнения:
(x-x1)*(у2-y1)*(z3-z1) – (x-x1)*(z2-z1)*(y3-y1) – (y-y1)*(x2-x1)*(z3-z1) + (y-y1)*(z2-z1)*(x3-x1) + (z-z1)*(x2-x1)*(y3-y1) – (z-z1)*(y2-y1)*(x3-x1) = 0.
Подставив заданные координаты точек, получаем:
5x + 9y - 7z - 2 = 0 .
Подставим координаты точки Д:
5*(-4) + 9*3 - 7*5 - 2 = -20 + 27 - 35 - 2 = -30.
То есть не равно нулю. Значит, точка Д не принадлежит плоскости точек А, В и С - это вершина пирамиды.
Решение.
См. рисунок 1.
Проведем высоту СК.
В прямоугольном треугольнике CKD катет КD равен половине гипотенузы, так как лежит против угла в 30°
KD = 4 см.
Тогда по теореме Пифагора СК²=СD² - KD²= 8²-4²=64-16=48
CK=4√3 см.
По свойству четырехугольника, описанного около окужности, суммы противоположных сторон равны
АВ + CD = ВC + AD
Значит ВС + AD = 4√3 + 8
Но так как BC = AK и AD = АК + KD = ВС + KD,
то ВС + ВС + 4 = 4 √3 + 8 ⇒ 2 ВС = 4√3 + 4 ⇒ ВС = 2√3 + 2
AD = BC + KD = 2√3 + 2 + 4 = 2 √3 + 6
r = CK/2 = 4√3/2 = 2√3
ответ. верхнее основание 2√3 + 2, нижнее основание 2 √3 + 6, радиус вписанной окружности
2√3