Чтобы понять принцип решения, надо иметь 2 рисунка. Один - в виде осевого сечения пирамиды с вписанной в неё сферой через апофему боковой грани, второй - в виде плана основания.
По первому рисунку определяем: проекция отрезка, соединяющего вершину пирамиды с центром сферы, равна R/tg(β/2).
По второму эту же проекцию как отрезок биссектрисы угла при основании равнобедренного треугольника от вершины до точки пересечения биссектрис находим равной (a/2)*tg(α/2).
Приравняем: R/tg(β/2) = (a/2)*tg(α/2).
Отсюда ответ: R = (a/2)*tg(α/2)*tg(β/2.
Объяснение:
В равнобедренном треугольнике медиана, опущенная на основание, является высотой и биссектрисой.
AB=BC=17AB=BC=17 см, BM=8BM=8 см. Вычислив сторону АМ по т. Пифагора из прямоугольного треугольника AMB.
AM= \sqrt{AB^2-BM^2}= \sqrt{17^2-8^2}= \sqrt{(17+8)(17-8)} = 5\cdot3=15AM=
AB
2
−BM
2
=
17
2
−8
2
=
(17+8)(17−8)
=5⋅3=15 см. Тогда AC=2\cdot AM=2\cdot15=30AC=2⋅AM=2⋅15=30 см - сторона основания.
2) Синус - это отношение противолежащего катета к гипотенузе. Из прямоугольного треугольника AMB: \sin\angle BAM= \dfrac{8}{17}sin∠BAM=
17
8
.
3) Площадь треугольника равна половине произведения стороны основания и высоты, проведенной к стороне основания, т.е. S= \dfrac{AC\cdot BM}{2}=\dfrac{30\cdot8}{2}=120S=
2
AC⋅BM
=
2
30⋅8
=120 см². Пользуясь формулой площади треугольника S= \dfrac{BC\cdot AK}{2}S=
2
BC⋅AK
, получим AK= \dfrac{2S}{BC} = \dfrac{2\cdot120}{17} = \dfrac{240}{17}AK=
BC
2S
=
17
2⋅120
=
17
240
см
используя теорему Пифагора( сумма квадратов катетов = квадрату гипотенузы), составим уравнение
х² + (14-х)² = 10²
х² + 196 - 28 х + х² - 100=0
2 х² -28 х +96=0
х²-14 х + 48 = 0
уравнение решим по теореме Виета
х₁ + х₂ = 14, х₁ * х₂ = 48
х₁=6 х₂ = 8, один катет 6 второй 14-6=8 и наоборот 8 и 14-8=6
значит, катеты данного треугольника 6 и 8 см.
ответ: стороны треугольника 6, 8 и 10 см