М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
aandrey336
aandrey336
05.06.2022 03:02 •  Геометрия

Дан параллелограмм abcd, диагональ bd =5, синус sin тупого угла adc = 4/5. найти площадь параллелограмма, если cd = квадратному корню из 41.

👇
Ответ:
dasha45da
dasha45da
05.06.2022
Сума углов, прилежащих к одной стороне параллелограмма равна 180°
Если угол D  - тупой, то угол C - острый.
∠С +∠D = 180°
sin ∠C= sin (180°-∠D) = sin ∠D=4/5=0,8
синусы углов, прилежащих к одной стороне равны.

cos ²α+sin²α=1    ⇒ cos²α=1-sin²α
значит
cos²(∠C) = 1 - sin²(∠C)=1-0,8²=0,36
cos (∠C)=0, 6  ( так как угол С - острый, знак " +" перед 0,6)
По теореме косинусов из треугольника BCD:
BD²= BC²+CD²- 2·BC·CD·cos∠С
5²=ВС²+(√41)²-2 ВС·√41·0,6
Получили квадратное уравнение:
ВС² - 1,2·√41 ·ВС +16 = 0
D=(1,2√41)² - 64<0
получилось, что треугольник не существует?
Проверьте условие
4,4(7 оценок)
Открыть все ответы
Ответ:
popkaf
popkaf
05.06.2022

1)г

2)Трикутники АВВ1 і АСС1 подібні за трьома кутами ( два при паралельних прямих і третій А спільний) отже

АС/АВ=СС1/ВВ1=11/(9+11) звідси

ВВ1=20*СС1/11=20*8,1/11=162/11

3)Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость.

В нашем случае проекциями данного нам отрезка на плоскости - это отрезки, соединяющие концы данного отрезка на плоскости и перпендикуляра, опущенного на данную плоскость.Но плоскости перпендикулярны, значит эти перпендикуляры - это расстояния от концов отрезка до линии пересечения плоскостей. То есть проекцией отрезка АВ на плоскость α будет отрезок АВ1,а углом между отрезком АВ и плоскостью α будет угол ВАВ1. Соответственно проекцией отрезка АВ на плоскость β будет отрезок ВА1,а углом между отрезком АВ и плоскостью β будет угол АВА1.

Синус угла ВАВ1 равен отношению противолежащего катета ВВ1 к гипотенузе AB, то есть Sin(ВАВ1)=12/24=1/2. Значит угол между отрезком АВ и плоскостью α равен 30°.

Синус угла АВА1 равен отношению противолежащего катета АА1 к гипотенузе AB, то есть Sin(АВА1)=12√2/24=√2/2. Значит угол между отрезком АВ и плоскостью α равен 45°.

ответ: Углы, образованные отрезком с плоскостями равны 30° и 45°.

4)находим высоту, проведенную к стороне 14

она равна 12( можно найти через формулу Герона площадь, а затем поделить на половину стороны 14см)

ну а дальше расстояние равно гипотенузе с катетами 12 и 16 и равна 20см

5)1. Проведем перпендикуляры из точек С и Д на АВ. Обозначим их СК и ДКПо условию

угол СКД=45.

2. Из треуг. АВС СК - высота правильного треугольника

СК=АВ*sqrt {3}/2=6

3. В треуг. АВД ДК - высота, опущенная на основание равнобедренного треугольника. Как известно, она совпадает с медианой.

АК= АВ/2= 2sqrt {3}

Из прямоуг. трег. АКД по теореме Пифагора

ДК= sqrt ( АД^2-АК^2)= sqrt( 14-12)= sqrt2

4 В треугольнике СКД СК=6, СД=sqrt2 . Угол СКД= 45

По теореме косинусов

СД^2=36+2-2*6*sqrt2*сos 45=26

СД=корень из 26

Объяснение:

4,7(79 оценок)
Ответ:
Даник2254
Даник2254
05.06.2022

1)г

2)Трикутники АВВ1 і АСС1 подібні за трьома кутами ( два при паралельних прямих і третій А спільний) отже

АС/АВ=СС1/ВВ1=11/(9+11) звідси

ВВ1=20*СС1/11=20*8,1/11=162/11

3)Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость.

В нашем случае проекциями данного нам отрезка на плоскости - это отрезки, соединяющие концы данного отрезка на плоскости и перпендикуляра, опущенного на данную плоскость.Но плоскости перпендикулярны, значит эти перпендикуляры - это расстояния от концов отрезка до линии пересечения плоскостей. То есть проекцией отрезка АВ на плоскость α будет отрезок АВ1,а углом между отрезком АВ и плоскостью α будет угол ВАВ1. Соответственно проекцией отрезка АВ на плоскость β будет отрезок ВА1,а углом между отрезком АВ и плоскостью β будет угол АВА1.

Синус угла ВАВ1 равен отношению противолежащего катета ВВ1 к гипотенузе AB, то есть Sin(ВАВ1)=12/24=1/2. Значит угол между отрезком АВ и плоскостью α равен 30°.

Синус угла АВА1 равен отношению противолежащего катета АА1 к гипотенузе AB, то есть Sin(АВА1)=12√2/24=√2/2. Значит угол между отрезком АВ и плоскостью α равен 45°.

ответ: Углы, образованные отрезком с плоскостями равны 30° и 45°.

4)находим высоту, проведенную к стороне 14

она равна 12( можно найти через формулу Герона площадь, а затем поделить на половину стороны 14см)

ну а дальше расстояние равно гипотенузе с катетами 12 и 16 и равна 20см

5)1. Проведем перпендикуляры из точек С и Д на АВ. Обозначим их СК и ДКПо условию

угол СКД=45.

2. Из треуг. АВС СК - высота правильного треугольника

СК=АВ*sqrt {3}/2=6

3. В треуг. АВД ДК - высота, опущенная на основание равнобедренного треугольника. Как известно, она совпадает с медианой.

АК= АВ/2= 2sqrt {3}

Из прямоуг. трег. АКД по теореме Пифагора

ДК= sqrt ( АД^2-АК^2)= sqrt( 14-12)= sqrt2

4 В треугольнике СКД СК=6, СД=sqrt2 . Угол СКД= 45

По теореме косинусов

СД^2=36+2-2*6*sqrt2*сos 45=26

СД=корень из 26

Объяснение:

4,5(55 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ