М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
dhdb1
dhdb1
12.10.2021 03:47 •  Геометрия

Через точку h данной окружности проведены касательная нв и хорда нк,равная радиусу.найдите угол внк между ними.

👇
Ответ:
Astronavtka
Astronavtka
12.10.2021

Проводим отрезок КО и НО и получаем равносторонний треугольник НКО, значит все углы у него = 60 гр. И угол КНО = 60 гр.

Касательная всегда перпендикулярна радиусу, т.е. угол ВНО = 90 гр.

уг.ВНК = уг ВНО -  уг. КНО=90-60 =30гр

4,7(49 оценок)
Открыть все ответы
Ответ:

Теорема. Центр окружности, вписанной в треугольник, является точкой пересечения его биссектрис.

Доказательство. Пусть ABC – данный треугольник, O – центр вписанной в него окружности, D, E и F – точки касания окружности со сторонами. Прямоугольные треугольники AOD и AOE равны по гипотенузе и катету. У них гипотенуза AO общая, а катеты OD и OE равны как радиусы. Из равенства треугольников следует равенство углов OAD и OAE. А это значит, что точка O лежит на биссектрисе треугольника, проведённой из вершины A. Точно так же доказывается, что точка O лежит на двух других биссектрисах треугольника. Теорема доказана.

Объяснение:

4,5(69 оценок)
Ответ:
нася12342
нася12342
12.10.2021

Теорема о пересечении серединных перпендикуляров к сторонам треугольника

В пункте 46 мы доказали, что биссектрисы треугольника пересекаются в одной точке. Оказывается, что серединные перпендикуляры к сторонам треугольника также пересекаются в одной точке.

Теорема. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.

Доказательство. Обозначим буквой O точку пересечения серединных перпендикуляров c и a к сторонам AB и BC треугольника ABC (рис. 33). Докажем, что точка O лежит на серединном перпендикуляре к стороне AC.

По теореме о серединном перпендикуляре к отрезку OA = OB и OB = OC, поэтому OA = OC. Таким образом, точка O равноудалена от концов отрезка AC и, следовательно, лежит на серединном перпендикуляре b к этому отрезку. Итак, все три серединных перпендикуляра к сторонам треугольника ABC пересекаются в точке O, и эта точка равноудалена от вершин A, B и C. Теорема доказана.

Замечание. Мы начали доказательство теоремы с того, что обозначили буквой O точку пересечения серединных перпендикуляров c и a к сторонам AB и BC. А верно ли, что прямые a и c пересекаются? Докажем, что это верно.

Проведем через точку B прямые p и q, что p ⊥ AB и q ⊥ BC (рис. 34). Поскольку прямые p и c перпендикулярны к прямой AB, то p || c.

Аналогично доказывается, что q || a. Прямая p пересекает прямую q (в точке B), поэтому она пересекает и параллельную ей прямую a (см. рис. 34); прямая a пересекает прямую p, поэтому она пересекает и параллельную ей прямую c. Итак, прямая a пересекает прямую c, что и требовалось доказать.

Объяснение:

4,4(80 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ