М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
иришка19911
иришка19911
23.08.2022 01:14 •  Геометрия

Две стороны параллелограмма относятся как 1: 3 периметр его равен 48.найти стороны параллелограмма?

👇
Ответ:
krasotkak31
krasotkak31
23.08.2022

т.к 1:3 то на 2 сторона 4 части значи т на весть периметр 8  

48/8=6

 

 1 сторона = 6 вторая 6*3=18 см

ответ 6 6 18 18  

4,6(94 оценок)
Ответ:
marichkakyhar
marichkakyhar
23.08.2022

48/2=24 это a+b  а и ь стороны,т.к. P=(a+b)*2

24/4=6  т.к. всего частей 4

и получается что 1 часть равна 6*1=6,а вторая 6*3=18

ответ: 6,6,18,18

4,4(78 оценок)
Открыть все ответы
Ответ:
selenkovaanasta
selenkovaanasta
23.08.2022

Якщо ще актуально)

Дано: ABCD - паралелограм, АС - діагональ, ВН⟂АС, АН= 6 см, СН= 15 см, ВС–АВ= 7 см.

Знайти: S abcd.

Розв'язання.

Розглянемо трикутники АНВ і СНВ.

Вони прямокутні, а сторона ВН для них є спільним катетом. АН= 6 см, СН= 15 см, тому очевидно, що ВС>АВ.

Нехай АВ= х см, тоді ВС= (х+7) см.

Оскільки ВН - спільна сторона, тоді справедлива така рівність (через т.Піфагора у ΔAHB і ΔCHB):

АВ²–АН²= ВС²–НС²;

х²–6²= (х+7)²–15²;

х²–6²= х²+14х+49–225;

х²–х²–14х= 36+49–225;

–14х= –140;

14х= 140;

х= 10 (см)

Отже, АВ= 10 см, тоді:

ВН²= х²–6²= 10²–6²= 100–36= 64;

ВН= 8 см (–8 не може бути)

Розглянемо ΔABC:

AC= AH+HC= 6+15= 21 см

ВН= 8 см, ВН - висота ΔABC, оскільки ВН⟂АС.

Знайдемо площу ΔАВС:

S= ½•AC•BH;

S= ½•21•8= 84 (см²).

Діагоналі паралелограма ділять його на два рівних трикутники, тобто їх площі рівні.

SΔABC= SΔCDA= 84 см²

Звідси площа паралелограма ABCD дорівнює

S abcd= 2•SΔABC= 2•84= 168 (см²).

Відповідь: 168 см².


Перпендикуляр, проведений з вершини паралелограма до його діагоналі, ділить її на відрізки довжиною
4,4(53 оценок)
Ответ:
MikasaHasegava
MikasaHasegava
23.08.2022

Задача: Знайти радіус кола, вписаного в рівносторонній трикутник, якщо радіус кола, описаного навколо цього трикутника, дорівнює 16 см.

Рішення:

Формула кола, вписаного в рівносторонній трикутник:

r = \frac{a}{2\sqrt{3} }, де а — сторона правильного тр-ка

Знайдемо сторону а через формула кола, описаного навколо рівностороннього тр-ка:

R = \frac{a}{\sqrt{3} } \: \Rightarrow \: a = R\sqrt{3} \\\\a = 16\sqrt{3} \:\: (cm)

Підставимо значення у формулу кола, вписаного в рівносторонній тр-к

r = \frac{a}{2\sqrt{3} }= \frac{16\sqrt{3}}{2\sqrt{3} } =\frac{16}{2} =8 \:\: (cm)

Відповідь: Радіус кола, вписаного в рівносторонній трикутник, рівний 8 см.

Задача: Точка перетину висот BK і PH трикутника BEP є центром вписаного в нього кола. Доведіть, що тр-к BEP рівносторонній.

Рішення:

Центром вписаного в коло трикутника є перетин бісектриса тр-ка, отже і BK та PH є бісектрисами. Висота є бісектрисою, якщо суміжні сторони рівні.

BK — висота/бісектриса ⇒ PB = EB;

PH — висота/бісектриса  ⇒  PB = EP.

Відповідно, PB = EB = EP  ⇒  ΔBEP — рівносторонній, що і потрібно було довести.

4,8(28 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ