Расстояние = 8 см , потому что когда ты нарисуешь полностью рисунок , то у тебя получиться прямоугольный треугольник MKE , и так как в этом треугольнике нам известны углы MEK=45 , MKE = 90 , мы можем найти KME = 180-(90+45) =45 . Теперь мы имеем равнобедренный треугольник MKE (т.к у него угол= 90 и углы при основании равны) , ну вот и всё , теперь по свойству равнобедренного треугольника мы находим расстояние между параллельными прямыми Это KE , а так как KE - это одна из боковых сторон равнобедренного треугольника, то MK=KE=8см . ответ: 8см
Определение. Прямая и плоскость называются параллельными, если они не имеют общих точек (а || )
Признак параллельности прямой и плоскости.
Теорема. Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.
Замечания.
Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой. Если одна из двух параллельных прямых параллельна данной плоскости, а другая прямая имеет с плоскостью общую точку, то эта прямая лежит в данной плоскости. Выводы.
Случаи взаимного расположения прямой и плоскости:
а) прямая лежит в плоскости; б) прямая и плоскость имеют только одну общую точку; в) прямая и плоскость не имеют ни
Определение. Две плоскости называются параллельными, если они не имеют общих точек.
Параллельность плоскостей и обозначается так: || . Рассмотрим признак параллельности двух плоскостей.
Теорема. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны. Случаи взаимного расположения плоскостей:
плоскости и параллельны. Свойства параллельных плоскостей:
1. Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.
2. Отрезки параллельных прямых, заключённые между параллельными плоскостями, равн
Пусть один угол х, тогда другой 8х.
Вместе х +8х = 180
9х=180
х=20
Один угол 20°, другой 160°