552 кв. ед.
Объяснение:
Все грани прямоугольного параллелепипеда - прямоугольники.
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:
B₁D² = AB² + AD² + BB₁²
BB₁² = B₁D² - (AB² + AD²) = 17² - (9² + 12²) = 289 - (81 + 144) = 289 - 225 = 64
BB₁ = √64 = 8
Площадь полной поверхности:
Sполн. = Sбок. + 2Sосн.
Площадь боковой поверхности:
Sбок. = Росн. · ВВ₁
Sбок. = 2(AB + AD) · BB₁ = 2(9 + 12) · 8 = 336 кв. ед.
Sосн. = AB · AD = 9 · 12 = 108 кв. ед.
Sполн. = 336 + 2 · 108 = 336 + 216 = 552 кв. ед.
552 кв. ед.
Объяснение:
Все грани прямоугольного параллелепипеда - прямоугольники.
Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений:
B₁D² = AB² + AD² + BB₁²
BB₁² = B₁D² - (AB² + AD²) = 17² - (9² + 12²) = 289 - (81 + 144) = 289 - 225 = 64
BB₁ = √64 = 8
Площадь полной поверхности:
Sполн. = Sбок. + 2Sосн.
Площадь боковой поверхности:
Sбок. = Росн. · ВВ₁
Sбок. = 2(AB + AD) · BB₁ = 2(9 + 12) · 8 = 336 кв. ед.
Sосн. = AB · AD = 9 · 12 = 108 кв. ед.
Sполн. = 336 + 2 · 108 = 336 + 216 = 552 кв. ед.
S=1/2AC*BH=1/2 x * BH
Рассмотрим прямоугольный треугольник ВНС. Поскольку высота ВН в равностороннем треуг-ке АВС, проведенная к основанию АС, будет являться и медианой, то СН=1/2 х. Зная, что все углы равностороннего треуг-ка равны по 60°, запишем:
sin C = BH : BC, отсюда ВН= BC * sin C
BH=x * sin 60 = x√3/2
Вернемся к формуле для площади:
S=1/2x*BH
1/2x*x√3/2=24√3
x²√3/4=24√3
x²√3=96√3
x²=96
x=4√6
BС=4√6 см