М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Poli4ka228
Poli4ka228
25.03.2023 18:19 •  Геометрия

Найдите сумму углов при вершинах пятиконечной звезды

👇
Ответ:
Matveu331
Matveu331
25.03.2023
Решение Вашего задания во вложении
4,5(62 оценок)
Открыть все ответы
Ответ:
nikita228wwx
nikita228wwx
25.03.2023
∠N=2∠M
∠M+∠N=180°⇒   ∠M+2·∠M=180°    ⇒3·∠M=180°    
∠M=60°
∠N=30°

∠NMK=30°     ∠KMP=30°         так как   МК- биссектриса угла М
∠NKM=∠KMP=30° - внутренние накрест лежащие при параллельных NK и MP    и секущей    МК

Треугольник MNK - равнобедренный
NM=NK=KP=8 см

Проводим высоты NF    и    KE    на сторону МР

Из прямоугольного треугольника MNF:
∠ M =60°
∠MNF=30°
MF=4 см ( катет против угла в 30° равен половине гипотенузы)
По теореме Пифагора
NF²=MN²-FM²=8²-4²=64-18=48
NF=4√3 см
h ( трапеции)=4√3 см

NF=EP=4 см

MP=MF+FE+EP=4+8+4=16 см

S( трапеции)=(NK+MP)·h/2=(8+16)·4√3/2=48√3    кв. см

ME=MF+FE=4+8=12
ME:EP=12:4=3:1
4,4(2 оценок)
Ответ:
Gay1122
Gay1122
25.03.2023
Точка К, из которой будет виден отрезок МN под наибольшим углом, будет находиться на общей окружности с точками М и N. При этом OK для неё является касательной.
По свойству касательной и секущей ОК²=ОМ·ОN.
Пусть ОМ=х, тогда ОN=OM+MN=x+6,
4²=x(х+6),
х²+6х-4=0,
х1=-8, отрицательное значение не подходит,
х2=2.
ON=2+6=8 дм - это ответ.

Теперь докажем, что отрезок  MN виден из точки К под большим углом.
Пусть радиус окружности около тр-ка КMN равен r.
На стороне ОК в любом месте возьмём точку Р и опишем окружность около тр-ка РMN, радиусом R. ОР для неё является секущей, а для окружности, радиусом r - касательной, значит R>r.
Формула хорды: l=2R·sin(x/2), где х - градусная мера хорды.
∠MKN=α, ∠MPN=β.
Обратим внимание, что углы α и β - это половина градусной меры хорды.
MN=2R·sinβ ⇒ sinβ=MN/2R.
MN=2r·sinα ⇒ sinα=MN/2r.
Сравним синусы, предположив, что они равны.
MN/2R=MN/2r.
1/R=1/r, но R>r, значит 1/R<1/r, значит sinβ<sinα.
Так как градусная мера хорды не может быть больше 180°, значит в формуле хорды 0°<α<90°, 0°<β<90°.
В этом диапазоне синус угла тем больше, чем больше его градусная мера,
значит α>β.
Доказано.
Решить на одной из сторон острого угла с вершиной о отмечены точки м и n ( м лежит между о и n). на
Решить на одной из сторон острого угла с вершиной о отмечены точки м и n ( м лежит между о и n). на
4,4(27 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ