В основаниии прямоугольного паралелепипеда лежит прямоугольник.Диагональ делит прямоугольник на два прямоугольных треугольника и диагональ является гипотенузой треугольника, по теореме Пифагора (сумма квадратов катетов равна квадрату гипотенузы) на ходим гипотенузу: гипотенуза^2 = 2^2 + 3^2
гипотенуза = square 13
теперь представляем диагональ в прямоугольном параллелепипеде - это получается прямоугольный треугольник. Один катет в этом треугольнике одновременно является гипотенузой из предыдущего пункта решения, равен он square 13, диагональ параллелепипеда является гипотенузой треугольника, а второй катет надо найти по теореме пифагора:square38^2 = (square 13)^2 + катет^2
катет =5
Площадь поверхности состоит из двух площадей оснований и 4 площадей боковых поверхностей.
Площадь основания = 2*3 = 6
Площадь одной боковой поверхности = 2*5 = 10
Площадь второй боковой поверхности = 3*5 = 15
Общая площадь = 2(5+12+18)=70
ответ:70 см^2
1. Пусть угол А равен х, тогда сумма других углов 180-х, а сумма половинок этих углов 90-х/2. Отсюда угол между прямыми, на которых лежат биссектрисы равен 90-х/2 по правилу внешнего угла. Но х=80. Значит, искомый угол равен 50 градусов.
ответ: 50.
2. Точка касания окружностей и центры этих же окружностей лежат на одной прямой. Если в этот треугольник вписать окружность, то точки касания данных окружностей и точки соприкосновения вписанной окружности со сторонами треугольника совпадут. Пусть радиус одной из окружностей равен х. Известно, что х=р-а, где р - полупериметр, а - противолежащая сторона. Значит, радиусы окружностей равны 4, 3 и 2 см соответственно.
ответ: 4 см; 3 см; 2 см.
3. Треугольник АВС, С - прямой угол.
Т.к. угол ВАС - общий у треугольников АВС и AOQ, то угол AQO=ACB. Треугольники AQO и РОС подобны по первому признаку. Значит:
OQ/AO=OC/PO;
OQ/CO=CO/PO;
CO^2=pq;
c^2=4pq;
c=2kop(pq).
ответ: 2кор(pq).
4. AP=QC=12/4=3 см.
PQ=3АС/4 по подобию треугольников АВС и PBQ. Отсюда периметр трапеции равен 12+3+3+9=27 см.
ответ: 27 см.