В правильной треугольной пирамиде высота основания равна h, боковые рёбра наклонены к основанию под углом α. Найти объём пирамиды.
===========================================================
В основании правильной треугольной пирамиды лежит правильный треугольник. Вершина такой пирамиды проецируется в центр основания. Центр правильного треугольника является точка О - точка пересечения бисссектрис, медиан и высот. СН = h , ∠ACB = αВ ΔАВС: Медианы треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2:1, считая от вершины.СО:ОН = 2:1 ⇒ СО = 2•СН/3 = 2h/3В ΔСАН: sin60° = CH/AC ⇒ AC = CH/sin60° = CH/(√3/2) = 2h/√3В ΔСМО: tgα = MO/CO ⇒ MO = CO•tgα = 2h•tgα/3V пир. = (1/3)•Sabc•MO = (1/3) • (AC²•√3/4) • MO = (1/3) • (2h/√3)² • (√3/4) • (2h•tgα/3) = 2√3•h³•tgα/27ОТВЕТ: V = 2√3•h³•tgα/27
Пусть дана трапеция ABCD, AD=15дм,ВС=10дм, S=31,25дм²,ВH-высота
S=(10+15)*BH/2=31,25
BH=31,5*2/25=2,5дм
Треугольник ABH прямоугольный
AH=(AD-BC)/2=(15-10)/2=2,5
AH=BH⇒<A=45гр
4)Пусть дан ромб ABCD, AС=28 м,ВD=21 м,ВH-высота,О-точка пересечения диагоналей
AB=√AO²+BO²=√196+110,25=√306,25=17,5
P=4AB=4*17,5=70м
S=AC*BD/2=AB*h
h=28*21/2*17,5=56/35=1,6м