2) 1) ∠А=∠С, как углы при основании равнобедренного треугольника
2) Пусть на одну часть приходиться х град., тогда ∠А=3х град., ∠С=3х град., а ∠В=4х град. Известно, что сумма всех углов треугольника 180°. Имею уравнение:
3х + 3х + 4х = 180
10х = 180
х = 180:10
х = 18, значит на одну часть приходится 18°
3) ∠А=∠С= 3•18=54°
∠В= 4•18=72°
ответ: ∠А=54°, ∠В=72°, ∠С=54°
3) 1) ∠А=∠С, как углы при основании равнобедренного треугольника
2) Пусть ∠В=х град., тогда ∠А=30+х град., ∠С=30+х. Известно, что сумма всех углов треугольника 180°. Имею уравнение:
х + 30 + х + 30 + х = 180
3х + 60 = 180
3х = 180 - 60
3х = 120
х = 120 : 3
х = 40, значит ∠В=40°
3) ∠А=∠С= 30+40 =70°
ответ: ∠А=70°, ∠В=40°, ∠С=70°
Объяснение:
по-моему я всё понятно написала, если что, то спрашивай в коментах
Предлагаю, обозначения
АВСД - данная трапеция, (рисуем картину),
АВ=13 см
СД=15 см
ВС=5 см,
АД=19 см
S(ABCD)-?
Решение
Пусть х см = отрезок АН, ( ВН - высота, опущенная из вершины В трапеции); тогда (19-5-х) = 14-х см = РД ( СР высота, опущенная из вершины С).
Так как треугольник АВН ( уг Н=90*) и тр ДСР (уг Р=90*) прямоугольные и высоты в трапеции равны, то выразим высоту трапеции (ВН =СР) по теореме Пифагора из двух указанных треугольников, получаем уравнение:
169-х^2=225-(14-x)^2
169-x2=225-196+28x-x2
28x = 140
x=5 сторона АН треуг АВН
По т Пифагора к тр АВН найдем ВН, получаем:
ВН=√(169-25) = √144 = 12 см - высота трапеции
S(ABCD)= 1/2 * (BC+AD) * BH
S(ABCD) = 1/2 * 24 * 12 = 12*12 =144 кв см