Пирамида правильная, значит ее основание - правильный треугольник. Высота в правильном треугольнике является и его медианой. Тогда находим по Пифагору высоту основания. Она равна √(4²-2²) = 3√2см. Высота правильной пирамиды проецируется в центр основания. Медиана (высота) основания делится этим центром в отношении 2:1, считая от вершины, то есть одна часть этой высоты равна (3√2/3)=√2. Тогда из прямоугольного треугольника с катетами h и 2/3 высоты основания и гипотенузой МС=6см по Пифагору находим искомую h. h=√(36-8) = 2√7см.
в ромбе ABCD два равных тупых угла (DAB, DCB) и два равных острых (ADC, ABC). Примите острый за х. AE -перпендикуляр из тупого угла к стороне DC, DE = EC. трAED = трAEC (1 признак равенства прям-ых тр-ов - по двум катетам: DE = EC, AE - общая) => в равных тр-ах против равных сторон лежат равные углы: ADE = ECA => ECA = ADC = ABC = x => DCB = DAB = 2x (свойство ромба: диагональ есть биссектриса) сумма углов ромба равна 360 градусам => 2x + 2x +x + x = 360 ADC = ABC = x = 60 (острый угол ромба) DCB = DAB = 2х = 120 (тупой угол ромба).
в ромбе ABCD два равных тупых угла (DAB, DCB) и два равных острых (ADC, ABC). Примите острый за х. AE -перпендикуляр из тупого угла к стороне DC, DE = EC. трAED = трAEC (1 признак равенства прям-ых тр-ов - по двум катетам: DE = EC, AE - общая) => в равных тр-ах против равных сторон лежат равные углы: ADE = ECA => ECA = ADC = ABC = x => DCB = DAB = 2x (свойство ромба: диагональ есть биссектриса) сумма углов ромба равна 360 градусам => 2x + 2x +x + x = 360 ADC = ABC = x = 60 (острый угол ромба) DCB = DAB = 2х = 120 (тупой угол ромба).