Основания ad и bc трапеции abcd равны 6 и 4 соответственно, а боковые стороны ab и cd — 4 и 5 соответственно. прямые ab и cd пересекаются в точке o. найдите длины отрезков ob и oc.
Дано: ABCD ромб ; BD =30 ; AC =40 ; AK ⊥ (ABCD) ; AK= 10 .
d( K , CD) = d( K , BC) - ?
Проведем из вершины A высоту ромба : AH ⊥ CD (AH = h) и соединим точка H с точкой K . KH -наклонная , AH ее проекция на плоскости ABCD. По теореме трех перпендикуляров CD ⊥ KH ,т.е. KH есть расстояние от точки K до стороны CD . Из ΔKAH : KH = √(KA² +AH²).
Сторона ромба равно a =√ ( (BD/2)² +(AC/2)² ) = (1/2)*√ ( BD² +AC)² = (1/2)*√ ( 30² +40)² =(1/2)*50=25. S(ABCD) =BD*AC/2 = 30*40/2 = 600. C другой стороны S(ABCD) =a*AH ⇒ 600 =25*AH ⇒AH =24. Окончательно : KH = √(KA² +AH²) = √(10²+24)² =√(100+576) =√676=26.
Квадрат можно разрезать на два равных или два неравных и не подобных прямоугольника. Если нужны неравные, но подобные, то этого сделать нельзя. Т.к. одна из сторон (длина) будет одинакова, а ширина разная. А в подобных прямоугольниках длина и ширина одного прямоугольника должна равно относиться к длине и ширине другого. Вывод: нельзя сделать 2 неравных подобных прямоугольника из квадрата
Но это при условии, что нужно использовать весь квадрат. Если можно оставить какую-то его часть, то можно сделать неравных подобных прямоугольника.
Объяснение: ΔAOD подобен ΔBOC
пусть ВО=х ОС=у
тогда АО=4+х ОD= 5+у
подставим в пропорцию AO :BO=OD: OC=AD : BC
(4+х):х = (5+у ):у= 6:4 6:4=3/2
(4+х)/х=3/2 8+2х=3х х=8 - это ОВ
(5+у )/у =3/2 10+2у=3у у=10- это ОС