меньший катет АС=6см, больший катет ВС=12√3 см
Объяснение:
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
АС ²=6×24=144
АС=√144=12см
Теперь найдём катет ВС по теореме Пифагора:
ВС²=АВ²–АС²=24²–12²=576–144=432=12√3см
Меньшая диагональ ромба делит его на 2 равнобедренных треугольник. Известно, что угол напротив основания = 60 градусов, значит другме углы(при основании) = (180-60)/2 = 60 градусов. Треугольник, у которого все углы равны, называется равносторонним, а значит меньшая диагональ равна стороне = 8см.
ответ: Периметр ромба = 32 см, меньшая диагональ = 8 см.
11. Диагональ (любая) делит ромб на 2 равнобедренных треугольника. Известно, что угол при основании этого треугольника (между диагональю и стороной ромба) = 60 градусов. Т.к. треугольник равнобедренный, то и второй угол между диагональю и ромбом будет 60 градусов. Третий угол = 180-60-60 = 60 градусов. Получаем равносторонний треугольник. Отсюда следует, что сторона ромба = диагонали = 10 см. А периметр = 4*10см= 40 см
ответ: 40 см