1) В основании 6-угольной пирамиды лежит правильный 6-угольник, который состоит из 6 равносторонних треугольников. Если сторона равна 4, то площадь S(осн) = 6*a^2*√3/4 = 6*16*√3/4 = 24√3 Высота (она же медиана и биссектриса) одного треугольника h = a*√3/2 = 2√3 Эта высота h - один катет прямоугольного треугольника, высота самой пирамиды H - второй катет, а апофема L - гипотенуза L^2 = h^2 + H^2 = 4*3 + 2^2 = 12 + 4 = 16, L = 4, как и сказано в условии. Это можно узнать и самому. Площадь боковой поверхности S(бок) = 6*a*L/2 = 3*4*4 = 48. Площадь полной поверхности S = S(осн) + S(бок) = 48 + 24√3 Объем пирамиды V = 1/3*S(осн)*H = 1/3*24√3*2 = 48/3*√3
2) Опять тоже самое. У правильной 4-угольной пирамиды в основании лежит квадрат. И опять же, апофему можно вычислить, зная сторону основания и высоту. S(осн) = 8^2 = 64 S(бок) = 4*a*L/2 = 2*8*5 = 80 Площадь полной поверхности S = S(осн) + S(бок) = 64 + 80 = 144 Объем пирамиды V = 1/3*S(осн)*H = 1/3*64*3 = 64
3) Если площадь основания (квадрата) равна 36, то сторона а = 6 И опять же, апофему можно вычислить, зная сторону основания и высоту. S(бок) = 4*a*L/2 = 2*6*6 = 72 Площадь полной поверхности S = S(осн) + S(бок) = 36 + 72 = 108 Объем пирамиды V = 1/3*S(осн)*H = 1/3*36*3√3 = 36√3
Белу́ха — гора. Самая высокая вершина Южной Сибири в составе Катунского хребта Алтая. Она имеет две острые пирамиды, разделенные широким седлом. Восточная пирамида, более высокая, поднимается на 4506 м над уровнем моря. Обе вершины и седло Белухи покрыты снегом. В районе Белухи находится главный центр оледенения Алтая. Со склонов Белухи спускается шесть больших длинных ледников и более двадцати малых. Первые ледники Белухи открыл Ф. В. Геблер в 1835 году. Его именем назван один из открытых им ледников. Высоту многих горных вершин, включая Белуху, определил известный сибирский исследователь, профессор Томского университета В. В. Сапожников.