Известно, что у равнобокой трапеции сумма противолежащих углов равна 180градусов Пусть градусная мера одного угла равна х, а противолежащего ему — у. Получим систему: система х+у=180 х-у=40 Складываем равенства: 2х=220, х=110 из первого уравнения у=180-х=180-110=70 Углы при основании у равнобокой трапеции равны. ответ: 70градусов; 110 градусов
Пусть ∠NKL = ∠MKP = φ - π/2 = α; неизвестная площадь NKM = s; a - s = KL*KN*sin(α)/2; b - s = KM*KP*sin(α)/2; если это перемножить, то (a - s)*(b - s) = KL*KN*KM*KP*(sin(α))^2/4 = a*b*(sin(α))^2; (a - s)*(b - s) = a*b*(sin(α))^2; осталось решить квадратное уравнение s^2 - (a + b)*s + a*b*(cos(α))^2 = 0; s = (a + b)/2 +- √((a + b)^2 - a*b*(cos(α))^2); s = (a + b)/2 +- √(a^2 + b^2)/2 + a*b*(sin(α))^2); Осталось понять, какой оставить знак. s = (a + b)/2 - √(a^2 + b^2)/2 + a*b*(cos(φ))^2);
я нашел частный случай, очень легкий, и по нему можно понять, что остается именно "минус". Пусть α = π/6; и сам треугольник KLM имеет угол L = π/6; оба треугольника получаются одинаковые, и их пересечение имеет площадь a/2, то есть s = (a + b)/4
Допустим, у нас есть плоскость. Всякая прямая, не перпендикулярная этой плоскости и пересекающая её (под острым углом) , является наклонной. Если на наклонной взять любую точку и провести через ней прямую, перпендикулярную данной плоскости, то проведённая прямая будет перпендикуляром. Если через точку пересечения наклонной и плоскости и точку пересечения перпендикуляра и плоскости провести прямую, эта прямая будет проекцией наклонной на плоскость. Проекция наклонной не зависит от того, какая точка взята на наклонной, чтобы провести через неё перпендикуляр, это можно легко доказать. Важно: проекция наклонной целиком лежит в данной плоскости, потому что две её точки в ней лежат.
Пусть градусная мера одного угла равна х, а противолежащего ему — у. Получим систему: система х+у=180 х-у=40
Складываем равенства: 2х=220, х=110
из первого уравнения у=180-х=180-110=70
Углы при основании у равнобокой трапеции равны. ответ: 70градусов; 110 градусов