По-горизонтали: 2. певучий и виртуозный деревянный духовой инструмент симфонического оркестра с диапазоном от ре малой октавы до ля (си бемоль) третьей октавы.3. инструмент, изготовлением которого прославились мастера амати, гварнери, страдивари.7. самый низкий деревянный духовой инструмент симфонического оркестра.8. ударный инструмент.10. деревянный духовой инструмент, хорошо мечтательное, задумчивое настроение.13. музыкальный инструмент, охватывающий практически полный диапазон симфонического оркестра.14. самый высокий медный духовой инструмент симфонического оркестра.15. один из струнных смычковых музыкальных инструментов.по-вертикали: 1. самый высокий деревянный духовой инструмент симфонического оркестра.4. самый низкий струнный смычковый инструмент симфонического оркестра.5. струнный инструмент, густым и певучим тембром. этому инструменту часто предназначены выразительные соло в оркестре.6. медный духовой инструмент, предком которого был охотничий горн. часто исполняет в оркестре аккомпанирующую партию.8. медный духовой инструмент с выдвижной кулисой.9. ударный инструмент с настраиваемой высотой звучания, в форме нескольких котлов, обтянутых сверху кожей.11. самый крупный медный духовой инструмент.12. один из самых древних струнных инструментов. вошел в состав симфонического оркестра в 19 веке.ответыпо-горизонтали: 2.кларнет. 3.скрипка. 7.фагот. 8.тарелки. 10.гобой. 13.фортепиано. 14.труба. 15.альт.по-вертикали: 1.флейта. 4.контрабас. 5.виолончель. 6.валторна. 8.тромбон. 9.литавры. 11.туба. 12.арфа.
В треугольнике ABC угол C равен 90°, AB = АС•√2, BC = 6. Найдите высоту CН. По т.Пифагора АВ²=АС²+ВС² АВ²-АС²=ВС² Примем АС=а. Тогда гипотенуза АВ=а√2. 2а²-а²=36⇒ а=√36=6 a√2=6√2 АС=ВС - треугольник равнобедренный. В равнобедренном треугольнике высота, проведенная к основанию, совпадает с медианой. В равнобедренном прямоугольном треугольнике высота из прямого угла=0,5 гипотенузы ( по свойству медианы из прямого угла). СН =(6√2):2=3√2
Иногда эту высоту требуется записать в ответе как √2CH. Тогда, так как √2•3•√2=6, в ответе пишется 6.
Для доказательства равенства отрезков следует доказать равенство треугольников, образованных указанными отрезками, высотой равнобедренного треугольника,которая как раз соединяет вершину равнобедренного треугольника и середину основания, и сторонами равносторонних треугольников, построенных на сторонах равнобедренного треугольника. Доказательство проводится через признак равенства треугольников по двум сторонам и углу между ними. Стороны равны по условию и построению, а углы равны по условию и по тому, что высота в равнобедренном треугольнике является также и биссектрисой.