Обозначим середину стороны AC буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам. Найдем длину медианы. Расстояние между двумя точками выражается через координаты формулой: MN || AB, KL || AC, DO || BC то средняя линия треугольника делится пополам. Вычислим длины сторон треугольника АВ, АС и ВС Следовательно среднии линии треугольника равны:
Площадь равнобедренной трапеции по основаниям и высоте находится по формуле: S= (a+b) / 2 × h, где a и b - длины оснований, h - высота h= 3 , a=10, b=3 S= (10+2) /2 × 3 S=6×3 = 18
Для нахождения периметра мы должны сначала найти длину боковой стороны трапеции. Так как трапеция равнобедренная, если опустить высоты из обоих тупых углов к противоположному основанию, мы получим РАВНЫЕ прямоугольные треугольники справа и слева и прямоугольник в середине. Нам нужно вычислить гипотенузу треугольников - это и будет боковая сторона трапеции. Мы знаем длину одного из катетов : h=3, длина второго катета будет равняться разности оснований, делёной на 2. (10-2)/2=4. Дальше вычисляем гипотенузу по теореме Пифагора: квадрат гипотенузы равен сумме квадратов катетов: √( 3²+4²)=√25=5 - длина боковой стороны. складываем боковые стороны и основания - получаем периметр. P= 10+2+5+5 =22
Центр описанной около треугольника окружности лежит в точке пересечения срединных перпендикуляров. Для равностороннего треугольника это точка пересечения высот, медиан, биссектрис, т.к. они у него совпадают. Медианы треугольника пересекаются в отношении 2:1, считая от вершины. Следовательно, радиус описанной около равностороннего треугольника окружности равен 2/3 его высоты. R=12:3•2=8 дм.
Если дана сторона правильного треугольника, то существует формула радиуса описанной около него окружности. R=a/√3
Найдем длину медианы.
Расстояние между двумя точками выражается через координаты формулой:
MN || AB, KL || AC, DO || BC то средняя линия треугольника делится пополам.
Вычислим длины сторон треугольника АВ, АС и ВС
Следовательно среднии линии треугольника равны: