Диагональ прямоугольника делит его на два треугольника, отношение сторон которых равно отношению сторон "египетского треугольника". т.е. 3:4:5
Примем коэффициент отношения сторон за х.
Тогда при катетах 3х и 4х гипотенуза равна 5х.
Следовательно , диагональ здесь играет роль гипотенузы
5х=20
х=4
Один катет равен 3*4=12 см - это меньшая сторона прямоугольника
другой 4*4=16 см - это большая его сторона.
ответ: Большая сторона прямоугольника равна 16 см.
Задачу можно решить и через теорему Пифагора:
20²=(3х)²+(4х)²
400=9х²+16х²
25х²=400
х²=16
х=4 см
Но гораздо удобнее знать хотя бы несколько так называемых Пифагоровых троек, к которым относится и египетский треугольник.
Площадь треугольника S 6
Периметр треугольника P 12
Угол треугольника α 53.13
Угол треугольника β 36.87
Угол треугольника γ 90
Высота треугольника ha 2.4
Высота треугольника hb 3
Высота треугольника hc 4
Медиана треугольника ma 2.5
Медиана треугольника mb 3.606
Медиана треугольника mc 4.272
Биссектриса треугольника la 2.424
Биссектриса треугольника lb 3.354
Биссектриса треугольника lc 4.216
Радиус вписанной окружности r 1
Радиус описанной окружности R 2.5
Внешний угол треугольника α 306.87
Внешний угол треугольника β 323.13
Внешний угол треугольника γ 270
Средняя линия треугольника mla 2.5
Средняя линия треугольника mlb 2
Средняя линия треугольника mlc 1.5
(2-2)²+(-1-3)² = 0²+(-4)² = 16 ≠25 - точка А не принадлежит окружности.