Рассмотрим ∆ АВD и ∆ СВЕ
Оба прямоугольные и имеют общий острые угол АВС.
Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.
Из подобия следует отношение
ВЕ:ВD=ВС:АВ⇒ВD•ВС=ВЕ•АВ ⇒
ВЕ:ВС=ВD:АВ
Две стороны ∆ ВЕD пропорциональны двум сторонам треугольника АВС, и угол между ними общий.
2-й признак подобия треугольников:
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Следовательно, ∆АВС и ∆ ВЕD подобны, что и требовалось доказать.
Можно добавить. что коэффициент подобия равен косинусу общего угла, т.к. отношение катетов ∆ СВЕ и ∆ АВД к их гипотенузам соответственно равны косинусу угла В треугольника АВС.
V₀ = 1600 мл
1. Конус в классической ориентации - основание внизу, вершина вверху.
Пустая часть конуса подобна полному конусу с линейным коэффициентом подобия k=1/2
Площади, например осевого сечения конусов или их полной поверхности будут при этом относиться как k²
Объёмы относятся как k³
Объём верхней пустой части сосуда составит
V₁ = V₀*k³ = 1600/8 = 200 мл
Объём жидкости, налитой до половины составит
V₂ = V₀-V₁ = 1600-200 = 1400 мл
2. Конус перевёрнут - основание вверху, вершина смотрит вниз
В этом случае заполнен только объём V₁ из пункта
V₁ = 200 мл