Решить, ! как можно подробнее и желательно с рисунком. длина ребра куба abcda1b1c1d1 равна 4b, точка е-середина отрезка b1b. найдите: а) расстояние между серединами отрезков ае и bd1 b) угол между прямыми ае и bd1
Сделаем рисунок. Опустим из середины диагонали куба ВD1 перпендикуляр КН на ВD. К - точка пересечения диагоналей куба и делит его высоту YН, равную ребру куба, пополам. КН=YН:2 =2b Н- точка пересечения диагоналей основания куба. РН равна половине ребра АD РН=2b ВE=ВВ1:2=2b МР средняя линия треугольника АВЕ и равна половине ВЕ: МР=b О - середина КН. ОК=КН:2= b МО=РН=2b МО⊥КН МОНР- прямоугольник Треугольник КМО - прямоугольный, КМ - его гипотенуза и является искомым расстоянием между серединами АЕ и ВD1 МК²=КО²+МО² МК²=b²+(2b)²=5b² МК=b√5
Если онлайн переводчик сделал верный перевод, условие такое: Один из углов треугольника равен 50°. Чему равен угол между биссектрисами двух других углов? ------ Сумма углов треугольника 180°. Если один из углов равен 50°, сумма двух других 180°-50°=130°. Биссектрисы делят углы пополам. Поэтому сумма их половин будет 130°:2=65°. При пересечении биссектрисы и основание исходного треугольника образуют треугольник. Сумма двух углов (тех, что являются половинами углов исходного треугольника) равна 65°. Тогда угол между биссектрисами равен 180°-65°=115°.
1) Дано: - правильная треугольная пирамида SABC, - высота пирамиды SO = Н, - угол наклона бокового ребра L к основанию равен α .
Примем сторону основания за а. Проекция AO бокового ребра AS на основание правильной пирамиды равна 2/3 высоты h основания. Из треугольника ASO находим AO = H/tg α. Высота h в 1,5 раза больше АО, то есть h = (3/2)H/tg α = 3H/(2tg α), тогда сторона а основания равна: а = h/(cos30°) = 3H/(2tg α)/(√3/2) = √3H/tg α. Площадь основания So = a²√3/4 = 3√3H²/(4tg² α) кв.ед. Тогда объём пирамиды равен: V = (1/3)SoH = (1/3)*(3√3H²/(4tg² α))*H = √3H³/(4tg² α) куб.ед.
2) Дано: правильная четырёхугольная пирамида SABCД, - высота пирамиды SO = Н, - угол наклона бокового ребра L к основанию равен α .
Половина ОА диагонали АС равна Н/tg α. Тогда сторона а основания а = Н√2/tg α. So = a² = 2H²/(tg² α). V = (1/3)*(2H²/(tg² α))*H = 2H³/(3tg² α).
Опустим из середины диагонали куба ВD1 перпендикуляр КН на ВD.
К - точка пересечения диагоналей куба и делит его высоту YН, равную ребру куба, пополам.
КН=YН:2 =2b
Н- точка пересечения диагоналей основания куба.
РН равна половине ребра АD
РН=2b
ВE=ВВ1:2=2b
МР средняя линия треугольника АВЕ и равна половине ВЕ:
МР=b
О - середина КН.
ОК=КН:2= b
МО=РН=2b
МО⊥КН
МОНР- прямоугольник
Треугольник КМО - прямоугольный,
КМ - его гипотенуза и является искомым расстоянием между серединами АЕ и ВD1
МК²=КО²+МО²
МК²=b²+(2b)²=5b²
МК=b√5