Пусть основание 5 см, диагональ 4 см. а боковая сторона 3 см. Проводим горизонтальный отрезок АВ длиной 5 см. Это будет основание. Ставим ножку циркуля в точку А и проводим окружность в верхней полуплоскости радиусом 3 см. Ставим ножку циркуля в точку В и проводим окружность в верхней полуплоскости радиусом 4 см. Пересечение - точка D. Через нее проводим прямую а параллельно АВ. Ставим ножку циркуля в точку В и проводим окружность радиусом 3 см, отмечаем пересечение окружности и прямой а - точка С. Соединяем А,В,С,D,Aю Готово. Окружности можно проводить не полностью, а до тех пор, пока не получится точка пересечения. Лучше, конечно, один раз увидеть, чем 5 раз прочитать.
Имеем трапецию ABCD. По условию AB = AM и AD = AB + CD. Очевидно, AD = AM + MD. Приравняем эти равенства: AB + CD = AM + MD, и, поскольку, AM = AB, имеем: AB + CD = AВ + MD, вычтем из равенства AB и получим CD = MD. По условию, АВ перпендикулярна АD, угол MAB равен 90 градусов, и поскольку треугольник MAB равнобедренный, угол АМВ равен углу АВМ = (180 - 90)/2 = 45 градусов. Аналогично с треугольником MDC: поскольку AB параллельна CD, угол MDC равен 90 градусов. Угол DMC равен углу DCM = (180 - 90)/2 = 45 градусов. Угол АМD - смежный, равен 180 градусов по определению. Из этого имеем: угол BMС = 180 - угол АМВ - угол DMC = 180 - 45 - 45 = 90 градусов. Следовательно, треугольник BMC - прямоугольный. Соединим точки M и N. Полученный отрезок MN = BN = NC, так как если описать окружность вокруг треугольника BMC, центром которой будет точка N, MN, BN и CN будут радиусами этой окружности. Рассмотрим треугольники ABN и AMN: угол ABM равен углу AMB, потому что треугольник равнобедренный, углы NBM и NMB равны аналогично. Из этого выходит, что треугольники ABN и AMN равны по двум сторонам и углу между ними. Треугольники BQN и MQN равны также по двум сторонам и углу между ними (BN = MN, QN - общая сторона, угол BNQ = углу MNQ). Углы NQB и NQM равны, и они - смежные; угол NQB = углу NQM = 180/2 = 90 градусов. Углы BMC и CMN равны 90 градусов. Далее, треугольники MNC и MDC равны по трем сторонам (MN = CN, MD = CD, DN - общая сторона). Треугольники MNP и CNP равны по двум сторонам и углу между ними (MN = CN, NP - общая сторона, угол MNP = углу CNP). Поскольку углы MPN и CPN равны и они смежные, то угол MPN = углу CPN = 180/2 = 90 градусов. Сумма углов четырех угольника равна 360 градусов. Угол QNP = угол NQM - угол QMP - угол MPN = 360 - 90 - 90 - 90 = 90 градусов, хоть для прямоугольника достаточно, чтобы хотя бы три угла были прямыми. Углы NQM, QMP, MPQ и PNQ равны 90 градусов. MPNQ - прямоугольник.
b - большой катет
с - гипотенуза
а1 - проэкция меньшего катета на гипотенузу
b1 - проэкция большего катета на гипотенузу ( b1 = 16 )
a1 = a^2 / c = 15^2 / c = 225 / c
a1 + b1 = c . подставим ( а1 = 225 / с ) и ( b1 = 16 )
225 / c + 16 = c
225 + 16*c = c*c
c^2 - 16c - 225 = 0
D = 16*16 - 4*(-225) = 1156
Корень квадратный D = 34
c = ( 16 + 34 ) / 2 = 25
b = кор. кв. ( с^2 - a^2 ) = кор. кв. ( 625 - 225 ) = 20 см
Радиус описанной окружности R = c / 2 = 25 / 2 = 12,5 см
Радиус вписанной окружности r = ( a + b - c ) / 2 = ( 15+20 - 25 ) / 2 = 5 см