Придумай это как бы в конце года на сайте и там было все что написано в описании и Закрепите скопированные фрагменты, чтобы они не исчезли через часЗакрепите скопированные фрагменты, чтобы они не исчезли через часЗакрепите скопированные фрагменты, чтобы они не исчезли через часПроведите пальцем по роликам, чтобы удалить ихЗакрепите скопированные фрагменты, чтобы они не исчезли через часПроведите пальцем по роликам, чтобы удалить ихПроведите пальцем по роликам, чтобы удалить их
Объяснение:
Скопированный текст автоматически отобразится здесьПроведите пальцем по роликам, чтобы удалить ихСкопированный текст автоматически отобразится здесьЗакрепите скопированные фрагменты, чтобы они не исчезли через часЗакрепите скопированные фрагменты, чтобы они не исчезли через часЗакрепите скопированные фрагменты, чтобы они не исчезли через часСкопированный текст автоматически отобразится здесьЗакрепите скопированные фрагменты, чтобы они не исчезли через часСкопированный текст автоматически отобразится здесьЗакрепите скопированные фрагменты, чтобы они не исчезли через часСкопированный текст автоматически отобразится здесьЗакрепите скопированные фрагменты, чтобы они не исчезли через часПроведите пальцем по роликам, чтобы удалить ихЗакрепите скопированные фрагменты, чтобы они не исчезли через часЗакрепите скопированные фрагменты, чтобы они не исчезли через часЗакрепите скопированные фрагменты, чтобы они не исчезли через часСкопированный текст автоматически отобразится здесьПроведите пальцем по роликам, чтобы удалить ихСкопированный текст автоматически отобразится здесь
6 ед.
Объяснение:
В правильной усеченной пирамиде в основаниях лежат правильные многоугольники, стороны которых соответственно равны между собой. Боковые грани такой пирамиды - равные между собой равнобокие трапеции. Радиусы окружностей, вписанных в основания, проведенные в точки касания сторон оснований с соответственной окружностью Н и Н1, перпендикулярны к сторонам оснований по свойству радиусов, проведенных в точки касания.
Проведем перпендикуляр из точки касания Н1М верхнего основания на нижнее основание. Тогда отрезок Н1Н перпендикулярен стороне основания АВ по теореме о трех перпендикулярах, то есть является искомой высотой боковой грани.
В прямоугольном треугольнике НН1М угол ∠НН1М = 30° по сумме острых углов. Следовательно, НН1 = 2·НМ по свойству катета, лежащего против угла 30°.
НМ = ОН - О1Н1 = 8-5 = 3 ед.
Высота боковой грани НН1 = 6 ед.
Свойства средней линии треугольника:
1. Средняя линия треугольника параллельна его третьей стороне.
2. Средняя линия треугольника равна половине третьей стороны.
Например:
на рисунке К и Н - середины сторон АВ и ВС треугольника АВС.
КН - средняя линия ΔАВС.
КН ║ АС и КН = АС/2.