В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы. Нам неизвестен 1 катет. Пусть он будет=х см. Тогда х^2+3^2=5^2 x^2+9=25 x^2=16 x=4 см - второй катет
Если в условии имеется в виду, что отрезок каждой длины можно использовать в четырехугольнике только один раз, то ни одного 4-угольника составить нельзя. Действительно, пусть длины сторон четырехугольника равны 2^k, 2^l, 2^m, 2^n, где 0≤k<l<m<n≤6. Тогда должно выполняться 2^k+2^l+2^m>2^n, т.к. длина ломаной всегда больше расстояния между ее конечными точками. Но 2^k+2^l+2^m≤2^(m-2)+2^(m-1)+2^m= =2^(m-2)*(1+2+4)=7*2^(m-2)<2^(m+1)≤2^n. Т.е. получается, что сумма трех меньших сторон четырехугольника меньше большей стороны. Противоречие. Т.е. четырехугольника с различными сторонами с длинами из этого списка не существует.
Если допустить, что некоторые длины сторон могут повторяться, то различных четырехугольников можно составить бесконечно много, т.к. даже со сторонами 1,1,1,1 существует бесконечное число различных ромбов.
Окружность, уравнение которой x^2+y^2 = 4 - это окружность с центром в начале координат радиусом 2., поскольку уравнение окружности таково: (x - a)^2 + (y - b)^2 = R^2 с центром в точке O(a;b) Радиуса R. Из условия имеем: (x - 0)^2 + (y - 0)^2 = 2^2. Далее, Из условия AB = BM. Рассмотрим это со следующего ракурса: AB = BM - радиусы некоторой окружности. На рисунке как бы мы не проводили хорду АВ, АВ будет равна ВМ и точка М будет лежать на той самой окружности. И хорда АМ большой окружности будет делится надвое радиусом в точке меньшей окружности (B, B1, B2 ... Bn). Получается, множество точек М - это некая окружность с центром B(2;0) радиусом 4. И уравнение такой окружности будет иметь вид: (x-2)^2 + y^2 = 16.
х^2+3^2=5^2
x^2+9=25
x^2=16
x=4 см - второй катет