Втреугольниках авс и а1в1с1 ав=а1в1,ас=а1с1,угол а=угол а1.на сторонах ав и а1в1 отмечены точки р и р1 так, что ар=а1р1.докажите, что треугольник врс= в1р1с1.
Треугольник АВС= треугольник А1В1С1 по двум сторонам и углу между ними, значит Угол В = углу В1, а сторона ВС=В1С1. Так как АР = А1Р1, то ВР=В1Р1. Тогда, треугольник ВРС и В1Р1С1 равны по двум сторонам и углу между ними
Пусть дан треугольник АВС, где С=90°, СН - высота, АВ=4 СН по условию. Проведем медиану СМ. Медиана прямоугольного треугольника, проведенная из прямого угла, равна половине гипотенузы. СМ=АВ:2=2 СН Треугольник СМВ - равнобедренный ( СМ=МВ) Угол МСВ=угол МВС В прямоугольном треугольнике МНС катет СН равен половине гипотенузы СМ. Катет, равный половине гипотенузы, противолежит углу 30° (из теоремы о катете, противолежащем углу 30°) Сумма углов треугольника равна 180° Угол МСВ=угол МВС=(180°-угол СМВ):2=(180°-30°):2=75° Сумма острых углов прямоугольного треугольника равна 90° Тогда в треугольнике АСВ угол А=90°-75°=15°
Объем цилиндра равен произведению площади его основания на высоту. V=SH Все нужные измерения найдем с т. Пифагора. Точка О - вершина прямого угла равнобедренного прямоугольного треугольника АОВ с катетами АО=ОВ=2 см АВ - гипотенуза этого треугольника=диаметру основания и по т.Пифагора равна 2√2, следовательно, радиус основания цилиндра (2√2):2=√2 СО- половина высоты цилиндра СН и равна радиусу основания, т.к. ОС - медиана треугольника АОВ и по свойству прямоугольного треугольника равна половине АВ, => СО= АС=√2. Высота цилиндра СН =СО*2=2√2 V=SH=π(√2)²*2√2=4π√2 см³