М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Мадам44444444
Мадам44444444
21.02.2020 14:32 •  Геометрия

Один из смежных углов 4 раза меньше другого.найти больший угол

👇
Ответ:

Сумма смежных углов = 180 градусов. В условии сказано, что 1 из них в 4 раза больше другого. Следовательно:

1 угол - х градусов

2 угол - 4х градусов

Вместе - 180 градусов.

 

По условию составим к задаче уравнение:

х+4х=180
Упростим это уравнение и решим его:

5х=180

х=180:5

х=36

Получаем 36 градусов. За х в задаче брали первый угол, он меньший, значит задача еще не решена.

 

Решаем дальше, здесь можно решить двумя Чтобы найти 2 угол нужно 36х4(так как 2 угол в 4 раза больше 1)

Получаем:

36х4=144 градуса Из 180 градусов отнять 36 градусов( так как сумма смежных углов 180 градусов)

Получаем:

180-36=144 градуса.

 

ответ: Больший угол ревен 144 градусам.

 

4,4(17 оценок)
Открыть все ответы
Ответ:
дура55555
дура55555
21.02.2020

5. На рисунке прямые CD и EF параллельны сторонам треугольника ABC. Найдите углы треугольника CED, если ∠A = 72°, ∠B = 26°

Рассмотрим ΔABC

∠C = 180 - ∠A - ∠B = 180 - 72 - 26 = 82° (сумма углов треугольника равна 180°)

Рассмотрим четырехугольник AFEC

∠F = 180 - ∠A = 180 - 72 = 108° (односторонние при FD || AC и секущей AB)

∠E = 180 - ∠C = 180 - 82 = 98° (односторонние при FD || AC  секущей BC)

∠CED = 180 - ∠FEC = 180 - 98 = 82° (смежные)

Рассмотрим четырехугольник AEDC

FD || AC (по условию)

AF || CD (по условию)

==> четырехугольник AEDC - параллелограмм

∠A = ∠D = 72° (в параллелограмме противоположные углы равны)

Рассмотрим ΔCED: ∠E = 82°, ∠D = 72°, ∠C - ?

∠C = 180 - ∠E - ∠D = 180 - 82 - 72 = 26° (сумма углов треугольника равна 180°)

ответ: ∠E = 82°, ∠D = 72°, ∠C = 26°

6. На рисунке треугольники ABC и DEF - прямоугольные, AB = DF, BC = DE. Докажите, что прямые AB и DF параллельны.

Рассмотрим ΔDEB и ΔBCA - прямоугольные

AB = DF (по условию)

BC = DE (по условию)

==> ΔDEB = ΔBCA по гипотенузе и катету ==> ∠F = ∠A - накрест лежащие для прямых DF и AB и их секущей AF

При параллельных прямых и их секущей накрест лежащие углы равны

==> DF || AB

Ч. т. д.

4,5(43 оценок)
Ответ:
mironhik1
mironhik1
21.02.2020

Объяснение:

В прямоугольном треугольнике АКС угол К равен 60° (дано).  =>

∠САК = 30°, значит АК - биссектриса угла А.

Биссектриса делит противоположную сторону в отношении прилежащих сторон (свойство).  Тогда СК/КВ = АС/АВ.

Но АВ = 2·АС (так как катет АС лежит против угла В, равного 30°). =>

СК/КВ = АС/(2АС) = 1/2.  =>

СК  = КВ/2 = 12/2 = 6 см.

Или так:

∠АКС = 60° (дано) => ∠САК = 30° (по сумме острых углов прямоугольного треугольника САК). => ∠ВАК = 30°.  =>

Треугольник АКВ равнобедренный, так как ∠В = 30° (по сумме острых углов прямоугольного треугольника АВС). и ∠ВАК = 30° (доказано выше).  =>

АК = ВК = 12 см.

В прямоугольном треугольнике АКС угол КАС = 30°, значит

СК = АК/2 = 12/2 = 6см.

Или так:

Пусть СК = х.  =>  ВС = 12+х.

В прямоугольном треугольнике АВС угол В равен 30° по сумме острых углов.

Tg(∠B) = tg30 = AC/BC = √3/3.  =>  

AC =  √3·(12+х)/3.  (1)

В прямоугольном треугольнике АКС угол К равен 60° (дано).

Tg(∠К) = tg60 = AC/CК = √3.  =>  

AC =  х√3.  (2).

Приравняем (1) и (2):  √3·(12+х)/3 = х√3.  => 12+х =  3х.  =>

СК = х = 6 см.

4,8(60 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ