В условии задачи не уточнено, какое произведение векторов необходимо найти.
1) Скалярное произведение векторов:
FA·AC = |FA|·|AC|·Cos(FA^AC).
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором". В нашем случае угол между векторами FA и АС тупой. Косинус тупого угла отрицателен.
Cos(AFC1)= -Cos(<(180-<CAF)= -AO/AF= -(2√2/2)/2= -√2/2. (АО - половина диагонали АС квадрата со стороной 2 см, АC = 2√2, AO =√2,<FAC = 135°).
Тогда FA·AC = 2·2·(-√2/2) = -2√2.
2. Векторное произведение векторов (определение: "Векторным произведением вектора a на вектор b называется вектор c, длина которого численно равна площади параллелограмма, построенного на векторах a и b, перпендикулярный к плоскости этих векторов и направленный так, чтоб наименьшее вращение от a к b вокруг вектора c осуществлялось против часовой стрелки, если смотреть с конца вектора c. Длина вектора c равна произведению длин векторов a и b на синус угла между ними":
|FA*AC| = |FA|*|АC1|*Sin(FA^АC1) = 2·2√2·√2/2 = 4 см. (Угол между векторами равен 135°, AC = 2√2).
Или так: высота пирамиды FO = √(AF²-AO²) = √(4 - 2) =√2. (По Пифагору). S = AC·FO = 2√2·√2 = 4 см². => |FC1|=4см.
Если провести через точку A прямую параллельно BC, то она пересечет BD в точке K таким образом, что AK = AB. Это потому, что ∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а ∠DBC = ∠ABD; так как BD - биссектриса получилось, что треугольник AKB - равнобедренный. Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K. Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
Соединив данную точку с вершинами треугольника, получим треугольную пирамиду с равными (это вытекает из условия) рёбрами. Но тогда будут равны и их проекции на плоскость треугольника и на плоскость, перпендикулярную плоскости треугольника. Так как вторые проекции лежат на прямых, проходящих через вершину пирамиды и пересекающих плоскость треугольника в одной точке (равноудалённой от вершин треугольника), то эти проекции совпадают). Но по условию через вершину пирамиды и данную точку проходит и данная в условии прямая. А это значит, что она совпадает с проекцией рёбер пирамиды на плоскость, перпендикулярную плоскости треугольника. Но эта проекция, а вместе сней и данная прямая, перпендикулярна плоскости треугольника.
Скалярное произведение: FA·AC = -2√2.
Векторное произведение: |FA*AC| = 4 cм.
Объяснение:
В условии задачи не уточнено, какое произведение векторов необходимо найти.
1) Скалярное произведение векторов:
FA·AC = |FA|·|AC|·Cos(FA^AC).
Определение: "Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором". В нашем случае угол между векторами FA и АС тупой. Косинус тупого угла отрицателен.
Cos(AFC1)= -Cos(<(180-<CAF)= -AO/AF= -(2√2/2)/2= -√2/2. (АО - половина диагонали АС квадрата со стороной 2 см, АC = 2√2, AO =√2,<FAC = 135°).
Тогда FA·AC = 2·2·(-√2/2) = -2√2.
2. Векторное произведение векторов (определение: "Векторным произведением вектора a на вектор b называется вектор c, длина которого численно равна площади параллелограмма, построенного на векторах a и b, перпендикулярный к плоскости этих векторов и направленный так, чтоб наименьшее вращение от a к b вокруг вектора c осуществлялось против часовой стрелки, если смотреть с конца вектора c. Длина вектора c равна произведению длин векторов a и b на синус угла между ними":
|FA*AC| = |FA|*|АC1|*Sin(FA^АC1) = 2·2√2·√2/2 = 4 см. (Угол между векторами равен 135°, AC = 2√2).
Или так: высота пирамиды FO = √(AF²-AO²) = √(4 - 2) =√2. (По Пифагору). S = AC·FO = 2√2·√2 = 4 см². => |FC1|=4см.